
GAP package authors’ workshop, Braunschweig, 14/09/2007 1

Computational Higher-Dimensional Algebra

packages at Bangor

The CHDA packages developed at Bangor over the last ten years are:

• XMod [2] – crossed modules and cat1-groups, with Murat Alp [1, 3],

• Gpd [13] – groupoids, group graphs and groupoid graphs, with Emma

Moore [12, 6],

• Kan [9] – double coset rewriting systems for fp-groups, with Anne

Heyworth [8, 5],

• IdRel [10] – logged rewriting and identities among relators with Anne

Heyworth [8, 11].

The work with these three students at Bangor has been based on research

in Algebraic Topology and Category Theory developed by Ronnie Brown,

Tim Porter, their graduate students and postdocs.

Another thesis of particular relevance is that of Magnus Forrester-Barker [7]

on representations of crossed modules.

This talk describes recent and planned developments for XMod and Gpd,

including an implementation of crossed modules over groupoids.

In particular, we present results from [4] on automorphisms of these

structures, written while Murat Alp was visiting Bangor in July this year.

Extensive background material is provided in the working document [14].
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Review of crossed modules and cat1-groupoids

A crossed module has the form:

S

∂

��

where ∂(sr) = (∂s)r

X =

R and s(∂s′) = ss′.

Note that an action of R on S is required,

while S, R both act on themselves by conjugation.

The equivalent cat1-group is given by:

G ∼= R n S

t,h

����

e ∗ t = idR,

C = where e ∗ h ∈ AutR,

R

e

OO

[ker t, ker h] = 1.

Work in this area typically requires conversion from

one category to an equivalent one.

Here, we construct C from X by G = R n S and

t(r, s) = r, h(r, s) = r(∂s), er = (r, 1),

and X from C by:

S = ker t, ∂ = h|S, sr = (er)−1s(er).
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Planned generalisations and extensions

xmod for groupoids

crossed modules

theory for 

P

S × On

R × In

xmod for groups

S

R

Q

P

four crossed modules plus

crossed pairing

Q,R act on each other via

crossed squares

S

R

A1

A2

An

crossed complexes

...

...

∂

S

R

∂

representation

R × Q → S,

Some code for crossed squares is already in the

development version of XMod.

Today we will restrict attention to crossed modules

over groupoids, and their automorphisms.
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The Bangor situation

The sorry state of affairs at Bangor is that the

sequence of theses described earlier has come to a

halt. The Mathematics Department has closed, the

last mathematics undergraduates finished their

degrees this summer, and the remaining staff have

been persuaded that they were only too happy to

accept the offered early retirement packages!

The result for me is that I can continue to teach the

occasional discrete mathematics module for

first-year computer science students and devote the

rest of my time to research and GAP programming.

Progress is therefore at last possible with my list of

“things to do” with the CHDA packages.

Thus this workshop comes at an opportune time,

and I am most grateful to the organisers for what has

been a splendid week in Braunschweig.



GAP package authors’ workshop, Braunschweig, 14/09/2007 5

Basic notation for groupoids

A groupoid is a category in which every arrow is

invertible. In the notation used here, a groupoid

C = (C1, C0) consists of the following:

• a set Ob(C) = C0 of objects,

• a set Arr(C) = C1 of arrows,

• source and target maps s, t : C1 → C0, so that we

write (a : u → v) whenever sa = u and ta = v, and

we denote by C(u, v) the hom-set of arrows with

source u and target v,

• an identity arrow 1u at each object u, with

s1u = t1u = u,

• an associative partial composition C1 ×0 C1 → C1,

with ab defined whenever ta = sb, such that

s(ab) = sa and t(ab) = tb, so that C(u) := C(u, u) is

a group, called the object group at u,

• for each arrow (a : u → v) an inverse arrow

(a−1 : v → u) such that aa−1 = 1u and a−1a = 1v.
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A morphism of groupoids, as for general categories,

is called a functor.

Thus a functor φ = (φ1, φ0) : C → D is a pair of maps

(φ1 : C1 → D1, φ0 : C0 → D0) such that φ11u = 1φ0u

and φ1(ab) = (φ1a)(φ1b) whenever the composite

arrow is defined.

It is often convenient to omit the subscripts 0, 1 since

it should be clear from the context whether an object

or an arrow is being mapped.

φ is injective and/or surjective if both φ0, φ1 are.

Automorphisms of C are bijective functors C → C.

Example 1

The categories of groups and groupoids, and their

morphisms, are written Gp, Gpd respectively.

There is a functor Gpd: Gp→ Gpd, G 7→ G, where G

is a groupoid with a single object (written ’∗’ or ’•’).

Example 2

For X a set, the trivial groupoid O(X) on X has

Ob(O) = X and Arr(O) = {1x | x ∈ X}.

We denote O({1, . . . , n}) by On.
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Example 3

The unit groupoid I has objects {0, 1} and four

arrows. The two non-identity arrows are (ι : 0 → 1)

and its inverse (ι−1 : 1 → 0).

The underlying digraph of a groupoid is obtained by

forgetting the composition, so the objects become

vertices, the arrows become arcs, while the source

and target maps have their usual digraph meaning.

A groupoid is connected if its underlying digraph is.

Example 4

The tree groupoid In has n objects {1, 2, . . . , n} and

n2 arrows {(p, q) | 1 6 p, q 6 n} where s(p, q) = p,

t(p, q) = q, (p, q)(q, r) = (p, r), and (p, q)−1 = (q, p).

Note that I2
∼= I. We also write I(X) for the tree

groupoid on a set of objects X. The underlying

digraph of In is complete.

The product C × D of groupoids C, D has objects

C0 × D0, arrows C1 × D1, and composition

(a1, b1)(a2, b2) = (a1a2, b1b2), so (a, b)−1 = (a−1, b−1).
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Example 5

If G is a group, considered as a one-object groupoid,

and In is a tree groupoid, then C = G × In may be

thought of as the groupoid with n objects {1, 2, . . . , n}

and n2|G| arrows {(i, g, j) | g ∈ G, 1 6 i, j 6 n}, with

source: s(i, g, j) = i, target: t(i, g, j) = j,

composition: (i, g, j)(j, h, k) = (i, gh, k),

and inverses: (i, g, j)−1 = (j, g−1, i).

A generating set for G is given by

{(1, g, 1) | g ∈ XG} ∪ Xn where XG is any generating

set for G and Xn = {(1, e, j) | 2 6 j 6 n}.

Every finite, connected groupoid is isomorphic to a

direct product of a group and a tree groupoid in this

way, and we call such a representation a standard

connected groupoid.

In general a groupoid is a disjoint union of connected

groupoids, but the only non-connected groupoids

considered today are the On.
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Example 6: a standard connected groupoid

A very simple example is given by the groupoid

C3 × I3, where C3 = {e, a, a2},

for which we may sketch the following diagram:

(1, a, 1)

(1, e, 2)

(1, a, 2)

(1, a2, 2)

(2, e, 1)

(2, a, 1)

(2, a2, 1)

(1, e, 3)

(1, a, 3)

(1, a2, 3)

(3, e, 2)

(3, a, 2)

(3, a2, 2)

(2, e, 3)

(2, a, 3)

(2, a2, 3)

(2, e, 2)
(2, a, 2)

(2, a2, 2)

(3, a, 3)
(3, a2, 3)(3, e, 3)

(1, e, 1)

(1, a2, 1)

2

3

1
(3, a2, 1)

(3, a, 1)

(3, e, 1)

Composition is: (i, g, j)(j, h, k) = (i, gh, k).

The number of arrows is: |G|.(# objects)2 = 27.
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Implementation of a connected groupoid requires:

• a set O of objects (some negative integers, say),

• a group Gi at a chosen root object i,

• a tree of isomorphisms θij (i 6= j).

Current version:

• standard connected groupoid G × In,

• the θij are all identity maps,

θ−3,−5

θ−3,−4

G−4

θ−4,−5

G−5

θj,k = θ−1

i,j ∗ θikG−3 −3

−4

−5

Old version (to be re-introduced soon):

• Gi, Gj, . . . conjugate in some parent group P ,

• θij is conjugation by pij ∈ P .

One day, more generally:

• Gi, Gj, . . . any isomorphic groups,

• Hom(i, j) = {(i, g, j) | i, j ∈ O, g ∈ Gj},

• composition: (i, g, j)(j, h, k) = (i, (θjkg)h, k).
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Automorphism groupoid of a group

Groupoids are a “good thing” because the category

of groupoids is cartesian closed. This means, in

particular, that the “automorphism gadget” of a

group G may be thought of as a groupoid where

• the objects are the automorphisms of G,

• the arrows are natural isomorphisms.

We recall the basic ideas of natural isomorphisms.

If β, γ : C → D are functors, then a natural

transformation τ : β → γ is determined by a function

τ : Ob(C) → Arr(D), u 7→ τu, such that the following

diagram commutes for every (a : u → v) ∈ C,

βu τu //

βa

��

τa

  A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

γu

γa

��

βv τv
// γv

List [sτu1, . . . , sτun] is a permutation of {u1, . . . , un},

the objects of C. Commutativity of the diagram

allows us to extend τ to a function Arr(C) → Arr(D),

a 7→ τa, where τ1u = τu for each object u.
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Restricting to groupoids (so arrows are invertible) we

have τv = (βa)−1(τu)(γa). So τ is fixed if we are

given, for each component of C, the image of one

object. Furthermore, when β, γ are surjective, every

transformation is invertible with (τ−1)u = (τu)
−1,

γu (τ−1)u=τ−1
u //

γa

��

βu

βa

��

γv
(τ−1)v=τ−1

v

// βv

and we call τ a natural equivalence.

Then [tτu1, tτu2, . . . , tτun] is a permutation of Ob(D).

Natural equivalences compose in the obvious way.

If δ is a third functor from C to D, and if σ : γ → δ is

a second natural equivalence, then we obtain the

diagrams:

βu τu //

βa

��

τa

  A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

γu

γa

��

σu //

σa

  A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A δu

δa

��

βv τv
// γv σv

// δv

C1
β1, γ1, δ1 //

s

��

t

��

C1

s

��

t

��

C0 β0, γ0, δ0

//

τ, σ

::uuuuuuuuuuuuuuuuuuuuu

C0
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Thus we obtain a composite natural equivalence

τσ : β → δ where:

(τσ)u = τuσu,

(τσ)a = (τa)(σv) = (τu)(σa) = (τa)(γa)−1(σa).

We thus obtain a groupoid whose objects are

isomorphisms and whose arrows are natural

equivalences. When C = D and we obtain the

automorphism groupoid AUT C of C.

Example 7

The group C3 = {e, a, a2} has two automorphisms:

the identity id and θ : a 7→ a2, so Aut(C3) ∼= C2.

We represent τ : C3 → C3 by the triple (τe, τa, τa2).

There are six such τ , as shown below:

θid

(e, a2, a)

(a2, a, e)

(a, e, a2)

(e, a, a2)

(a, a2, e)

(a2, e, a)

This is the group-groupoid AUT C3 associated to the

crossed module (0 : C3 → C2). The corresponding

cat1-group has source C2 n C3
∼= S3.
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Automorphisms of C = G × In.

An automorphism α ∈ A = Aut(C) is required to

preserve the groupoid structure:

s(αa) = α(sa), t(αa) = α(ta), α(ab) = (αa)(αb).

There are three types of automorphism of C :

(1) For π a permutation in the symmetric group Sn

we define the automorphism απ by

απ(i, g, j) = (πi, g, πj).

(2) We may apply an automorphism κ of G to the

loops at root object 1, giving an automorphism

ακ of C, fixing the objects, where

ακ(1, g, 1) = (1, κg, 1), ακ(1, e, j) = (1, e, j).

It follows that ακ(i, g, j) = (i, κg, j), so ακ applies

κ to all the hom-sets at once.

(3) Hom-set C(i, j) gives a regular representation for

G with action (i, g, j)h = (i, gh, j). Automorphisms

αb are defined for each b = (b1, . . . , bn) ∈ Gn by

αb(i, g, j) = (i, b−1
i gbj, j).
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Theorem 1 Aut C ∼= (Sn × Out G) n Q.

Here is an outline of this construction.

There are actions of both Sn and Aut G on Gn, where

bπ = (bπ−11, . . . , bπ−1i, . . . , bπ−1n),

bκ = (κb1, . . . , κbi, . . . , κbn),

and these actions commute, giving an action of

Sn × Aut G on Gn.

The map θ : Gn → Aut C, b 7→ αb is a

homomorphism, and ker θ is the set of constant

vector (z, z, . . . , z) with z ∈ Z(G), the centre of G.

When g = (g, g, . . . , g) is an arbitrary constant vector

in Gn, the type (3) αg is also the type (2) conjugation

automorphism α(∧g). We denote by Ĝ the diagonal

subgroup in Gn, put Ẑ = ker θ, and define Q = Gn/Ẑ.

An automorphism α = (α1, α0) of C is specified by:

• κ ∈ Aut(G), so that α1(1, g, 1) = (π1, κg, π1),

• images α1(1, e, j) = (π1, bj, πj), 2 6 j 6 n,

• the permutation α0 = π on the objects,

and so α has the form ακ ∗ αb ∗ απ with b1 = e.
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Natural equivalences for C

If automorphisms β, γ of C have the form

β = ακ ∗ αb ∗ απ, γ = αλ ∗ αc ∗ αξ

then there is a natural equivalence τ : β → γ with

τ1 = (π1, h, ξ1) provided

λg = (κg)h, τj = (πj, b−1
j hcj, ξj).

It follows that AUT C has |OutG| components;

vertex groups Z = Z(G); with |Sn n Q| objects in

each component.

Applying this to C = C3 × I3 of Example 6, we find

A = Aut(C3 × I3) ∼= (S3 × C2) n C2
3 ,

so |A| = 108.

These 108 automorphisms are the objects in the

automorphism groupoid, and form two components

with 54 objects in each component, so that

AUT(C3 × I3) ∼= 2 copies of C3 × I54.

Compare this with AUT C3 in Example 7.
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Here is the general result.

Theorem 2

The automorphism groupoid AUT C of C = G × In

has

• n!.|Aut G|.|G|n−1 objects (automorphisms),

• (n!)2.|Aut G|.|G|2n−1 arrows (natural equiv.),

• degree |Z(G)| = |G|/|Inn G|,

• |Out G| connected components, with

n!.|Inn G|.|G|n−1 objects in each component.

Corollary

When C is a group G considered as a one-object

groupoid, the automorphism groupoid has

• |Aut G| objects;

• |Aut G|.|G| natural equivalences;

• degree |Z(G)|;

• |Out G| components;

• |Inn G| objects in each component.
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Automorphisms of a crossed module of groupoids

From X• = (∂• : S → R) we construct

X = (∂ : (S × On) → (R × In)) .

R

(i, s, i)

(i, r, j)

(j, sr, j)

j

X• :

S × On

∂

R × In

∂• =

i
k

X :

S

The groupoid action is given by

(i, s, i)(i,r,j) := (j, sr, j).

An automorphism of X is a triple (α2, α1, α0)

satisfying:

• α0 is a permutation of the objects,

• (α1, α0) ∈ Aut(R × In), a groupoid automorphism,

• (α2, α0) ∈ Aut(S × On), a groupoid automorphism,

• α2 ∗ ∂ = ∂ ∗ α1,

• α2

(

(i, s, i)(i,r,j)
)

= (α2(i, s, i))
α1(i,r,j).
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The automorphisms of X are known once those of

X•, On, In are known.

Again there are three types of automorphism:

(1) π ∈ Sn ⇒ (απ, απ, π) ∈ AutX ,

(2) (σ, ρ) ∈ AutX• ⇒ (ασ, αρ, ( )) ∈ AutX ,

(3) b ∈ Rn ⇒ ((αb, αb, ( )) ∈ AutX

where αb(i, s, i) := (i, sbi, i).

The automorphisms {(∧r,∧r) | r ∈ R} form a normal

subgroup N of AutX•.

The following result resembles Theorem 2.

Theorem 3

AutX ∼= (Sn × N) n (Rn/Ẑ),

where now Z is the centre of R.
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