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Introduction

Σg : a connected, closed, compact, orientable
surface of genusg ≥ 0.
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Introduction

Σg : a connected, closed, compact, orientable
surface of genusg ≥ 0.

G is a finite group acting onΣg faithfully and
preserving the orientation.

ThenG can be realized as a group of orientation
preserving conformal homeomorphisms
f : X −→ X for some Riemann Surface structure
(X,Σg) on the underlying spaceΣg.
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Why Finite Groups?

Classify groupsG such thatG ⊆ Aut(X) for some
Riemann SurfaceX (≈ Σg).
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Why Finite Groups?

Classify groupsG such thatG ⊆ Aut(X) for some
Riemann SurfaceX (≈ Σg).

For g ≥ 2, |Aut(X)| ≤ 84(g − 1) if X ≈ Σg

(Hurwitz).

No Inductive method known !!!

Some patterns known about Abelian Groups
(Harvey, Maclachlan, Breuer).

A Reverse Question :

Given a finite groupG, to find out the list of
numbersg ≥ 2 such thatG acts onΣg.
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Introduction : Hurwitz Theorem

A finite groupG acts on a surfaceΣg with quotientΣg/G ≈ Σh if
and only if

2(g−1) = |G|{2(h−1)+Σr
i=1(1−

1

ni

)} (R.H.Formula)

and there exist elementsa1, b1, · · · , ah, bh, x1, · · · , xr in G such that

G = 〈a1, b1, · · · , ah, bh, x1, · · · , xr〉, and that

∏h

i=1
(ai, bi)

∏r

j=1
xj = 1 (Long Relation)

wherexi is of orderni in G (Order Relation).
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Data Spectrum of a GroupG

A dataD associated toG is (h;n1, n2, . . . , nr) s.t. :

• G is generated by non-trivial elements :
a1, b1, . . . , ah, bh, x1, . . . , xr;h, r ≥ 0

• Order ofxi is ni, 1 ≤ i ≤ r, and
h∏

i=1

[ai, bi]
r∏

j=1

xj = 1
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Data Spectrum of a GroupG

A dataD associated toG is (h;n1, n2, . . . , nr) s.t. :

• G is generated by non-trivial elements :
a1, b1, . . . , ah, bh, x1, . . . , xr;h, r ≥ 0

• Order ofxi is ni, 1 ≤ i ≤ r, and
h∏

i=1

[ai, bi]
r∏

j=1

xj = 1

The numberg is called genus ofG associated toD if

g(D) := g = |G|{(h − 1) +
1

2
Σr

i=1(1 −
1

ni

)}
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Background

sp(G) := Image(g) \{0, 1} = Genus Spectrum.
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Background

sp(G) := Image(g) \{0, 1} = Genus Spectrum.

D(G) := g−1(sp(G)) = Data Spectrum.

Kulkarni (1987) showed that there is anN = N(G)
such that :
• g ∈ sp(G) =⇒ g ≡ 1 mod N

• for almost allg ≡ 1 mod N , one hasg ∈ sp(G).

This specifies the following :

• Minimum genus :µ0(G) = minimumsp(G)

• Minimum stable genus :σ0(G)

= minimum

{l ≥ 2 : l ∈ sp(G), g ≥ l, g ≡ 1 modN =⇒ g ∈ sp(G)}
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Question and Known Results

For a finite groupG, describesp(G)? or,
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Question and Known Results

For a finite groupG, describesp(G)? or,

Describe the set{g ≥ 2 : g ≡ 1 mod N} \ sp(G)?

Known Results :
• Cyclic p-GroupsKulkarni, Maclachlan, 1991
• Groups with MEPMaclachlan, Talu, 1998,

Detailed calculations are done for :
• Elementary Abelianp-Groups
• p-Groups with proper cyclic subgroups

of indexp (andp2)
• Split Metacyclic GroupsWeaver, 2001
• p-groups of exponentp Oesterlé, S.
• p-groups of maximal class of order uptopp S.
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p-Groups of exponentp

The R. H. Formula in Hurwitz Theorem is of the form :

g − 1

pn−1
+ p = hp +

1

2
(p − 1)r (∗)
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g − 1
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+ p = hp +

1

2
(p − 1)r (∗)

The abelian case is understood byMaclachlan, Talu, 1998. We
will consider the non-abelian case only.
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p-Groups of exponentp

The R. H. Formula in Hurwitz Theorem is of the form :

g − 1

pn−1
+ p = hp +

1

2
(p − 1)r (∗)

The abelian case is understood byMaclachlan, Talu, 1998. We
will consider the non-abelian case only.

Associated Graded Lie Algebra ( overFp )

A(G) =
⊕

n≥1
An(G), An(G) = γn(G)/γn+1(G)

Semi-rank of a finitep-group depends onA1(G), A2(G) and
the grading among them.
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p-Groups of exponentp : Genus Spectrum

Recall : sp(G) ⊆ {g ≥ 2 : g ≡ 1 mod N}
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p-Groups of exponentp : Genus Spectrum

Recall : sp(G) ⊆ {g ≥ 2 : g ≡ 1 mod N}

Reduced Genus :̃g = 1
N

(g − 1)

Theorem 1: Let G be a non-abelian finitep-group of exponent

p, wherep is an odd prime. Letd be minimum number of

generators ofG andr0 be its semi-rank. Theñg ≥ 1 is a

reduced genus forG if and only if either :

(1) g̃ = pg0 whereg0 ≥ d − r0 − 1 (Oesterlé)

(2) g̃ + p − 1
2
(p − 1) is expressible aspx + 1

2
(p − 1)y

for x, y ≥ 0, and such that2x + y ≥ d.
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p-Groups of exponentp : Genus Spectrum

Recall : sp(G) ⊆ {g ≥ 2 : g ≡ 1 mod N}

Reduced Genus :̃g = 1
N

(g − 1)

Theorem 1: Let G be a non-abelian finitep-group of exponent

p, wherep is an odd prime. Letd be minimum number of

generators ofG andr0 be its semi-rank. Theñg ≥ 1 is a

reduced genus forG if and only if either :

(1) g̃ = pg0 whereg0 ≥ d − r0 − 1 (Oesterlé)

(2) g̃ + p − 1
2
(p − 1) is expressible aspx + 1

2
(p − 1)y

for x, y ≥ 0, and such that2x + y ≥ d.

Using these results it is possible to write down the explicit

formulas forµ0(G) andσ0(G)
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p-Groups of higher exponent

Corollaryto Thm 1 : The Genus Spectrum as described, is
unique forp-groups of exponentp which have same order and
which share the (graded) isomorphic first and second Piecesof
the associated Lie Ring.
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p-Groups of higher exponent

Corollaryto Thm 1 : The Genus Spectrum as described, is
unique forp-groups of exponentp which have same order and
which share the (graded) isomorphic first and second Piecesof
the associated Lie Ring.

This property is no longer true for groups of higher exponent.
Evidents are found in groups of order36 (Linton, S.).

Theorem 2: Forp-groups of maximal class of order uptopp

there are precisely two Genus Spectrum in each order; one for
exponentp and another for exponentp2 (S.).

We believe that the characerizing property of Genus Spectrum
is connected to the isomorphism type of associated Graded Lie
Ring.
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Data Spectrum for finite p-groups

Let G be a finitep-group of exponentpe. We denote by

(h;x
[p]
1 , . . . , x

[pe]
e ), a data with multiplicity, where entries are

the multiplicities of the orders in the top.
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Data Spectrum for finite p-groups

Let G be a finitep-group of exponentpe. We denote by

(h;x1, . . . , xe), a data with multiplicity.

Poset Structure onD(G) :

D ≤ D′ if :

(1) h ≤ h′,

(2) xi ≤ x′

i whenxi 6= 0 (1 ≤ i ≤ e).

(3) xi = 0, xi+1 6= 0 andx′

i 6= 0 (1 ≤ i ≤ e − 1).
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Data Spectrum for finite p-groups

Let G be a finitep-group of exponentpe. We denote by

(h;x1, . . . , xe), a data with multiplicity.

Poset Structure onD(G) :

D ≤ D′ if :

(1) h ≤ h′,

(2) xi ≤ x′

i whenxi 6= 0 (1 ≤ i ≤ e).

(3) xi = 0, xi+1 6= 0 andx′

i 6= 0 (1 ≤ i ≤ e − 1).

If D ∈ D(G) then{D′ : D ≤ D′} ⊆ D(G).
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Minimal Signatures of p-groups

Finding Genus Spectrum of finitep-groups is closely
connected to finding minimal elements inD(G).
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Minimal Signatures of p-groups

Finding Genus Spectrum of finitep-groups is closely
connected to finding minimal elements inD(G).

Question : To find the minimal elements inD(G)
whereG is ap-group of maximal class. (Work in
progress withDietrich, Eick, Müller)

We are still to find out which could be a better
characterization for Genus Spectrum.
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