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Introcluction

= X, . aconnected, closed, compact, orientable
surface of genus > 0.
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>, . a connected, closed, compact, orientable
surface of genus > 0.

G Is a finite group acting oix,, faithfully and
preserving the orientation.

Thend can be realized as a group of orientation
preserving conformal homeomorphisms

f . X — X for some Riemann Surface structure
(X, %,) on the underlying space, .
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Why Finite Groups?

m Classify groups~ such thatz C Aut(X) for some
Riemann Surfac& (=~ ).
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Why Finite Groups?

= Classify group< such thatz C Aut(X) for some
Riemann Surfac& (=~ ).

mForg > 2, |Aut(X)| <84(g—1)if X = %,
(Hurwitz).
m No Inductive method known !!!

= Some patterns known about Abelian Groups
(Harvey, Maclachlan, Breuer)

= A Reverse Question:

Given a finite groug=, to find out the list of
humbersy > 2 such thati' acts on>,.
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A finite group G acts on a surfack, with quotienty, /G ~ X, if
and only If

2g—1) = [GH{2(h—1) 41, (1-—)}

Uz
and there exist elemenis, by, --- ,an, by, 1, -+, x, IN G such that
G = (a1, by, - ,ap, by, x1,- -+ , ), and that

Hf—l(ai’ b@')H;_lfﬂj =1

wherez; is of ordern; in G
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Data Spectrum of a Group G

= A dataD associated t6/ is (h; ny,n9,...,n,) S.t. :

» (7 Is generated by non-trivial elements :
ai,by,...,an,bp,21,..., 23R, 7 >0
e Order ofz; Is nz, 1<:<r, and

Haz, Haz]—l

=
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Data Spectrum of a Group G

= A dataD associated t6/ is (h; ny,n9,...,n,) S.t. :

(7 Is generated by non-trivial elements :
ai,by,...,an,bp,21,..., 23R, 7 >0
Order ofzx; IS nz, 1<:<r, and

Haz, ij—l

=

= The numbey Is called genus off associated td If

o(D) =g = GH{(h—1) + 55, (1))

T;
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ground

(G) :=Imageg) \{0, 1} = Genus Spectrum
G) := g~ 1(sp(G)) = Data Spectrum



Background

msp(G) .= Imageg) \{0,1} = Genus Spectrum
m D(G) :=¢ ! (sp(G)) = Data Spectrum

= Kulkarni (1987) showed that there is an= N ()
such that :

@ gcsp(G) = g=1modN
e for almost ally = 1 mod /V, one hagy € sp(G).
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.= Image@) \{0,1} =
=g (sp(@)) =
Kulkarni (1987) showed that there Is an
such that :
®gcsp(G) = ¢g=1mod
e for almost allg = 1 mod /V, one hag; € sp(G).

This specifies the following :
e Minimum genus (G) = minimumsp(G)
e Minimum stable genusa((G)
= minimum
{1>2:1€sp(G), g>1,g=1modN = g € sp(G)}
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Question and Known Results

= For a finite group=, describesp(G)?  or,
m Describethe seftg > 2: g =1mod N} \ sp(G)?
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For a finite groug, describesp(G)?  or,
Describe the seftg > 2 : g =1 mod N} \ sp(G)?

Known Results :
e Cyclic p-Groups
e Groups with MEP
Detalled calculations are done for :
e Elementary Abeliam-Groups
e p-Groups with proper cyclic subgroups
of indexp (andp?)

e Split Metacyclic Groups$
® p-groups of exponemnt
® p-groups of maximal class of order upt®
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)ups of exponentp

e R. H. Formula in Hurwitz Theorem is of the form :




p-Groups of exponentp

® The R. H. Formula in Hurwitz Theorem is of the form :

Fp=hp+ -(p—1)r (%)

® The abelian case is understoodidyiclachlan, Talu, 1998Me
will consider the non-abelian case only.
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p-Groups of exponentp

® The R. H. Formula in Hurwitz Theorem is of the form :

g—1 1
o Fp=hp+ 5(19 — 1)r ()
® The abelian case is understood!/liy 1AWe

will consider the non-abelian case only.

m Associated Graded Lie Algebra ( ovEr, )

A(G) =D, 4"(G), AYG) = Mm(G)/Yn(G)

m Semi-rank of a finitey-group depends od'(G), A*(G) and
the grading among them.
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)s of exponentp : Genus Spectrum
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Recall : sp(G) C {g >2:9g=1mod N}
Reduced Genusg = +(g — 1)

. Let G be a non-abelian finite-group of exponent
p, Wherep Is an odd prime. Let be minimum number of
generators ofy andr, be its semi-rank. Thei > 1 is a
reduced genus far if and only if either :
(1) g = pgo Wheregy > d — 19 — 1
(2)g+p— 1(p—1)is expressible agr + (p — 1)y
for x,y > 0, and such thax + y > d.
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Recall : sp(G) C {g >2:9g=1mod N}
Reduced Genusg = +(g — 1)

. Let G be a non-abelian finite-group of exponent
p, Wherep Is an odd prime. Let be minimum number of
generators ofy andr, be its semi-rank. Thei > 1 is a
reduced genus far if and only if either :
(1) g = pgo Wheregy > d — 19 — 1
(2)g+p— 1(p—1)is expressible agr + (p — 1)y
for x,y > 0, and such thax + y > d.

Using these results it is possible to write down the explicit
formulas for and
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p-Groups of higher exponent

m Corollaryto Thm 1 : The Genus Spectrum as described, Is
unique forp-groups of exponem which have same order and
which share the (graded) isomorphic first and second Piafces
the associated Lie Ring.
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to Thm 1 : The Genus Spectrum as described, Is
unique forp-groups of exponent which have same order and
which share the (graded) isomorphic first and second Piafces
the associated Lie Ring.

This property is no longer true for groups of higher exponent
Evidents are found in groups of ordgt

. For p-groups of maximal class of order upt®
there are precisely two Genus Spectrum in each order; one for
exponent and another for exponept
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to Thm 1 : The Genus Spectrum as described, Is
unique forp-groups of exponent which have same order and
which share the (graded) isomorphic first and second Piafces
the associated Lie Ring.

This property is no longer true for groups of higher exponent
Evidents are found in groups of ordgt

. For p-groups of maximal class of order upt®
there are precisely two Genus Spectrum in each order; one for
exponent and another for exponept

We believe that the characerizing property of Genus Spectru
IS connected to the iIsomorphism type of associated Graded Li
Ring.
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Data Spectrum for finite p-groups

m Let G be a finitep-group of exponent©. We denote by
(h; 2, ..., ¥, a data with multiplicity, where entries are
the multiplicities of the orders in the top.
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Spectrum for finite p-groups

G be a finitep-group of exponent©. We denote by
r,,...,x,), adata with multiplicity.



Data Spectrum for finite p-groups

m Let G be a finitep-group of exponent®. We denote by
(h; x{,...,z,), a data with multiplicity.
B Poset Structure aB(G) :
D < Dif:
(1) h < K,
(2) x; < 2z whenz; 0 (1 <1 < e).
(B)x; =0,2,01 F0andx; #0(1 <1< e—1).
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Data Spectrum for finite p-groups

m Let G be a finitep-group of exponent©. We denote by
(h; x{,...,z,), a data with multiplicity.
B Poset Structure aB(G) :
D < Dif:
(1) h < K,
(2) x; < 2z whenz; 0 (1 <1 < e).
(B)x; =0,2,01 F0andx; #0(1 <1< e—1).

wiIf DeDG)then{D : D < D'} CD(G).
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Minimal Signatures of p-groups

= Finding Genus Spectrum of finigegroups is closely
connected to finding minimal elementsliiG).
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= Question : To find the minimal elementsiiG)
whereG Is ap-group of maximal class. (Work in
progress withDietrich, Eick, Mullei
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Minimal Signatures of p-groups

= Finding Genus Spectrum of finigegroups is closely
connected to finding minimal elementsliiG).

= Question : To find the minimal elementsiiG)
whereG Is ap-group of maximal class. (Work in
progress witlDietrich, Eick, Mullel)

m \We are still to find out which could be a better
characterization for Genus Spectrum.
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