The Linear Matrix Problems and the Determination of p-Groups

by
Olga Pylyavska
University "Kyiv-Mohyla Academy"
11.-15. September 2007

Braunschweig

Goal: to show one method of determination of p-groups up to isomorphisms by the applying of linear matrix problems.

Matrix problems

Definition 1.

- Let M be a matrix (or a set of matrices)
- T be a set of transformations applicable to M

$$
M \mapsto T(M)
$$

(often T is also given by a matrix or a set of matrices)

A matrix problem is a problem to find a canonical form of M with respect to T.

The method of linear matrix problems (L.M.P.) was proposed by prof. A.Roiter,
was worked out by Kyiv School of Representation Theory

Examples.

- Gauß. $M \in \operatorname{Mat}_{\mathrm{k}}(n \times m) S \in \mathrm{GL}(\mathbb{k}, n)$

$$
R \in \mathrm{GL}(\mathbb{k}, m)
$$

$$
M \mapsto S^{-1} M R
$$

- Jordan Norman Form. $M \in \operatorname{Mat}_{k}(n \times n)$

$$
S \in \mathrm{GL}(\mathbb{k}, n)
$$

$$
M \mapsto S^{-1} M S
$$

- Congruence problem. $M \in \operatorname{Mat}_{\mathrm{k}}(n \times n)$ $S \in \mathrm{GL}(\mathbb{k}, n)$

$$
M \mapsto S^{*} M S
$$

- "Wild problem". $M_{1}, M_{2} \in \operatorname{Mat}_{\mathrm{k}}(n \times n)$ $S \in \mathrm{GL}(\mathbb{k}, n)$

$$
\left(M_{1}, M_{2}\right) \mapsto\left(S^{-1} M_{1} S, S^{-1} M_{2} S\right)
$$

- $M_{1}, M_{2} \in \operatorname{Mat}_{\mathrm{k}}(n \times n) S, R, T \in \mathrm{GL}(\mathbb{k}, n)$

$$
\left(M_{1}, M_{2}\right) \mapsto\left(S^{-1} M_{1} R, S^{-1} M_{2} R+S^{-1} M_{1} T\right)
$$

etc.

Extension

Let G be a central abelian extension group of an elementary abelian group H :

$$
1 \rightarrow N \xrightarrow{i} G \xrightarrow{\pi} H \rightarrow 1 .
$$

where the sequence is exact.

To determine a central abelian extension we need

- a group H;
- an abelian N;
- a homomorphism $\varphi: H \rightarrow$ Aut N;
- a system of factors $\theta:(H \times H) \hookrightarrow N$.

The extension is the set of pairs

$$
\begin{equation*}
G=\langle(h, c) \mid h \in H, c \in N\rangle \tag{1}
\end{equation*}
$$

with the multiplication low

$$
\begin{equation*}
\left(h_{1}, c_{1}\right)\left(h_{2}, c_{2}\right)=\left(h_{1} h_{2}, c_{1}^{h_{2}} c_{2} \theta\left(h_{1}, h_{2}\right)\right) \tag{2}
\end{equation*}
$$

- Let H be elementary abelian p-group (p - odd), $H=\left\langle h_{1}\right\rangle \times\left\langle h_{2}\right\rangle \times \ldots \times\left\langle h_{n}\right\rangle ;$
- Let N be abelian, $|N|<p^{p-1}$.

To construct θ we need only
(3)

$$
\theta\left(h_{i}^{p-1}, h_{i}\right)=a_{i} \in N
$$

$$
\begin{equation*}
\theta\left(h_{i}^{-1} h_{j}^{-1}, h_{i} h_{j}\right)=b_{i j} \in N \tag{4}
\end{equation*}
$$

with restrictions

$$
\begin{equation*}
a_{i}^{\varphi\left(h_{i}\right)-1}=1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
b_{i j}=b_{j i}^{-1} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
b_{i j}^{p^{2}}=1 . \tag{7}
\end{equation*}
$$

An extension group G can be determined by the following setup:

$$
G \leadsto(H, N, \varphi, \theta)
$$

Definition 2. Two extensions $G=(H, N, \varphi, \theta)$ and $G=\left(H^{\prime}, N^{\prime}, \varphi^{\prime}, \theta^{\prime}\right)$ are called equivalent if the following diagram commutes:

Lemma 1. For $|N|=p^{m}$ with $m<p-1$ two extensions (H, N, φ, θ) and $\left(H, N, \varphi^{\prime}, \theta^{\prime}\right)$ are equivalent iff

- $\varphi=\varphi^{\prime}$
- There exist elements $\eta_{1}, \ldots \eta_{n} \in N$ such that

$$
a_{i j} \eta_{i}^{h_{j}-1} \eta_{j}^{-h_{i}+1}=a_{i j}^{\prime} \text { and } b_{i} \eta_{i}^{p}=b_{i}^{\prime} .
$$

Note. For each pair $\left(h_{i}, 1\right)^{\prime} \in G^{\prime}=\left(H^{\prime}, N^{\prime}, \varphi^{\prime}, \theta^{\prime}\right)$ the image

$$
\sigma\left(\left(h_{i}, 1\right)^{\prime}\right)=\left(h_{i}, \eta_{i}\right)
$$

gives another representative of $\operatorname{coset} h_{i}$ by N.

Definition 3. Two extensions $G=(H, N, \varphi, \theta)$ and $G=\left(H^{\prime}, N^{\prime}, \varphi^{\prime}, \theta^{\prime}\right)$ are called weakly equivalent if the following diagram commutes:

$$
\begin{aligned}
& 1 \longrightarrow N^{\prime} \xrightarrow{i^{\prime}} G^{\prime} \xrightarrow{\pi^{\prime}} H^{\prime} \longrightarrow 1
\end{aligned}
$$

Lemma 2. Let $G \leadsto(H, N, \varphi, \theta)$ and N be a characteristic subgroup of the group G.
G is isomorphic $G^{\prime} \longleftrightarrow \leadsto\left(H^{\prime}, N^{\prime}, \varphi^{\prime}, \theta^{\prime}\right)$ iff corresponding extensions are weakly equivalent.

Note. If G^{\prime} is weakly equivalent G, then

$$
\begin{equation*}
\varphi^{\prime}(h)=\rho^{-1}\left(\varphi\left(h^{\tau}\right)\right) \rho \tag{8}
\end{equation*}
$$

for each $h \in H$.

Assume additionally that N is an elementary abelian p-group too,

$$
N=\left\langle c_{1}\right\rangle \times\left\langle c_{2}\right\rangle \times \ldots \times\left\langle c_{m}\right\rangle .
$$

Thus

- $a_{i}=\Pi_{k=1}^{m} c_{k}^{\alpha_{k i}}$;
- $b_{i j}=\Pi_{k=1}^{m} c_{k}^{\beta_{k i j}}$.

We obtain the matrices over the field F_{p} with p elements:

$$
\begin{equation*}
A=\left(\alpha_{k i}\right)_{k=1 . . m ; i=1 . . n} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
B=\left(\beta_{k i j}\right)_{k=1 . . m ; i, j=1 . . n}, \tag{10}
\end{equation*}
$$

where $B=\left(B_{1}, B_{2}, \ldots, B_{m}\right)$,
B_{k} is antisymmetric $n \times n$ matrix for each $k=1$.. m.
Lemma 3. Let H, N are elementary abelian of order p^{n}, p^{m} respectively, $m<p-1$.

Each set (H, N, φ, A, B), where A, B are matrices $(9),(10)$ for which the restrictions (5)-(7) hold, determines an extension G.

Algorithm

Note.

> Aut $H \cong G L_{n}\left(F_{p}\right)$,
> Aut $N \cong G L_{m}\left(F_{p}\right)$
for the elementary abelian p-groups H, N.

1. Find the homomorphism $\varphi: H \rightarrow$ Aut N.

According (8) we may determine φ up to conjugacy.
2. For fixed φ find all pairs of transformations $(\rho, \tau) \in \operatorname{Aut}(N) \times \operatorname{Aut}(H)$ saving φ :

$$
\begin{equation*}
\rho^{-1}\left(\varphi\left(h^{\tau}\right)\right) \rho=\varphi(h) \tag{11}
\end{equation*}
$$

for all $h \in H$.
3. Establish, which elements $a_{i}, b_{i j}$ can be made equal to the identity element by re-choosing the representatives of the cosets by N.

Algorithm (continued)

4. Reduce a set of matrices $M=\left(A, B_{1}, B_{2}, \ldots, B_{m}\right)$ to the canonical form W.R.T. transformations (ρ, τ) :

$$
\begin{equation*}
A^{\prime}=R^{-1} A T \tag{12}
\end{equation*}
$$

$(13)\left(\begin{array}{c}B_{1}^{\prime} \\ B_{2}^{\prime} \\ \ldots \\ B_{m}^{\prime}\end{array}\right)=R^{-1}\left(\begin{array}{c}T^{*} B_{1} T \\ T^{*} B_{2} T \\ \ldots \\ T^{*} B_{m} T\end{array}\right)$,
where R, T are matrices corresponding ρ, τ respectively,
T^{*} is the matrix transposed to T.
5. For each canonical form construct the group G :

$$
\begin{gathered}
G=\left\langle\bar{h}_{1}, \bar{h}_{2}, \ldots \bar{h}_{n}, \bar{c}_{1}, \bar{c}_{2}, \ldots \bar{c}_{m}\right|\left[\bar{h}_{i}, \bar{h}_{j}\right]=\prod_{k=1}^{m} \bar{c}_{k}^{\alpha_{k i j}} \\
{\left[\bar{c}_{k}, \bar{h}_{i}\right]=\bar{c}^{\varphi\left(h_{i}\right)-1},\left[\bar{c}_{k}, \bar{c}_{l}\right]=1, \bar{c}_{k}^{p}=1} \\
\left.\bar{h}_{i}^{p}=\prod_{k=1}^{m} \bar{c}_{k}^{\beta_{k i}},(i, j=1 . n, k, l=1 . m)\right\rangle
\end{gathered}
$$

Example. Let H and N be elementary abelian of orders p^{2} and p^{3} respectively $(p>3)$,
$H=\left\langle h_{1}\right\rangle \times\left\langle h_{2}\right\rangle$ and $N=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times\left\langle a_{3}\right\rangle$.

Determine all extensions of H by N.

There are 6 morphisms
$\varphi: H \rightarrow S_{p}(\operatorname{Aut}(N))=U T_{3}\left(\mathbb{F}_{p}\right)$
up to conjugacy :

1. $h_{1} \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ and $h_{2} \mapsto\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
2. $h_{1} \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ and $h_{2} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
3. $h_{1} \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $h_{2} \mapsto\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
4. $h_{1} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ and $h_{2} \mapsto\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
5. $h_{1} \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $h_{2} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
6. $h_{1} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $h_{2} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Consider the homomorphism
$\varphi: H \rightarrow S_{p}(\operatorname{Aut}(N))=U T_{3}\left(\mathbb{F}_{p}\right)$.
$h_{1} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ and $h_{2} \mapsto\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

The system of factors:

$$
\begin{aligned}
& \theta\left(h_{1}^{p-1}, h_{1}\right)=a_{1} \in N \\
& \theta\left(h_{2}^{p-1}, h_{2}\right)=a_{2} \in N \\
& \theta\left(h_{1}^{-1} h_{2}^{-1}, h_{1} h_{2}\right)=b_{12} \in N
\end{aligned}
$$

where a_{1}, a_{2}, b_{12} satisfy the restrictions (5)-(7).
Corresponding matrices:

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22} \\
0 & 0
\end{array}\right) \\
& B_{1}=\left(\begin{array}{cc}
0 & \beta_{1} \\
-\beta_{1} & 0
\end{array}\right) B_{2}=\left(\begin{array}{cc}
0 & \beta_{2} \\
-\beta_{2} & 0
\end{array}\right) B_{3}=\left(\begin{array}{cc}
0 & \beta_{3} \\
-\beta_{3} & 0
\end{array}\right)
\end{aligned}
$$

The re-choosing of the representatives gives:

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22} \\
0 & 0
\end{array}\right) \\
& B_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) B_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) B_{3}=\left(\begin{array}{cc}
0 & \beta_{3} \\
-\beta_{3} & 0
\end{array}\right)
\end{aligned}
$$

$\beta_{3} \neq 0$ gives groups from the isoclinism family Φ_{6}.
$\beta_{3}=0$ gives groups from the isoclinism family Φ_{4}.

Consider the case $\beta \neq 0$.
Transformations ρ and τ satisfying (11) have a matrices

$$
\begin{aligned}
& R=\delta\left(\begin{array}{ccc}
r_{12} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{33} \\
0 & 0 & 1
\end{array}\right) \text { where } \delta=r_{11} r_{22}-r_{12} r_{21} \\
& T=\left(\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
A^{\prime}=R^{-1} A T \tag{14}
\end{equation*}
$$

(15) $\left(\begin{array}{c}B_{1}^{\prime} \\ B_{2}^{\prime} \\ B_{3}^{\prime}\end{array}\right)=R^{-1}\left(\begin{array}{c}T^{*} B_{1} T \\ T^{*} B_{2} T \\ T^{*} B_{3} T\end{array}\right)=\left(\begin{array}{c}B_{1} \\ B_{2} \\ B_{3}\end{array}\right)$

For $p>3$ there are $p+7$ canonical forms for A.
N is a characteristic subgroup, $N=\Phi(G)$, for each extension $G=(H, N, \varphi, A, B)$,
thus
we obtain $p+7$ non-isomorphic groups of order p^{5} from family Φ_{6}.

Applications

Easy modification of this method give possibility to obtain:

- The determination of finite p-groups with abelian subgroup of index p .
L.A.Nazarova, A.V.Roiter, V.V.Sergeichuk, and V.N.Bondarenko, 1972.
- The determination of finite p-groups which are an extension of cyclic by the abelian subgroup of index bigger than p.
V.V.Sergeichuk, 1974.
- The investigation of p-groups which are an extension of elementary abelian of order p^{2} by elementary abelian.
O.Pyliavska (O.S.Pilyavskaya), 1993
- The determination of p-groups of order p^{6}.
O.Pyliavska (O.S.Pilyavskaya) 1983

