Introduction

Martix groups
Constructive recognition
The problem
Complexity theory
Randomised algoritims
Constructive recognition

Matrix group recognition in GAP

Max Neunhöffer
University of St Andrews

15.9.2007

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition

trees

Example: invariant
subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

$$
\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition

trees

Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our implementation

Matrix groups ...
Let \mathbb{F}_{q} be the field with q elements and

$$
\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition

trees

Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our implementation

Matrix groups ...
Let \mathbb{F}_{q} be the field with q elements and

$$
\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$.

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel

Recursion: composition

 treesExample: invariant

subspace

Finding reductions
Solution for leaves Classifications

Matrix groups ...

Let \mathbb{F}_{q} be the field with q elements and

$$
\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications

Matrix groups ...

Let \mathbb{F}_{q} be the field with q elements and

$$
\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$
What do we want to determine about G ?

- The group order |G|

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algoritims Construative recognition Troubles

Reduction

Matrix groups ...

Let \mathbb{F}_{q} be the field with q elements and

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$
What do we want to determine about G ?

- The group order |G|
- Membership test: Is $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$ in G ?

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorthms Construative recognition Troubles

Reduction

Matrix groups ...

Let \mathbb{F}_{q} be the field with q elements and

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$
What do we want to determine about G ?

- The group order $|G|$
- Membership test: Is $M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ in G ?
- Homomorphisms $\varphi: G \rightarrow H$?

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorthms Construative recognition Troubles

Reduction

Matrix groups ...

Let \mathbb{F}_{q} be the field with q elements and

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$
What do we want to determine about G ?

- The group order $|G|$
- Membership test: Is $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$ in G ?
- Homomorphisms $\varphi: G \rightarrow H$?
- Kernels of homomorphisms? Is G simple?

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Construative recognition Troubles

Reduction

Matrix groups ...

Let \mathbb{F}_{q} be the field with q elements and

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$
What do we want to determine about G ?

- The group order $|G|$
- Membership test: Is $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$ in G ?
- Homomorphisms $\varphi: G \rightarrow H$?
- Kernels of homomorphisms? Is G simple?
- Comparison with known groups

Reduction

Matrix groups ...

Let \mathbb{F}_{q} be the field with q elements and

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$
What do we want to determine about G ?

- The group order |G|
- Membership test: Is $M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ in G ?
- Homomorphisms $\varphi: G \rightarrow H$?
- Kernels of homomorphisms? Is G simple?
- Comparison with known groups
- (Maximal) subgroups?

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms Construative recognition Troubles

Reduction

Matrix groups ...

Let \mathbb{F}_{q} be the field with q elements and

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$
What do we want to determine about G ?

- The group order $|G|$
- Membership test: Is $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$ in G ?
- Homomorphisms $\varphi: G \rightarrow H$?
- Kernels of homomorphisms? Is G simple?
- Comparison with known groups
- (Maximal) subgroups?
- ...

Matrix group recognition

Permutation groups and matrix groups

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition

The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms

Computing the kernel

Let \mathbb{F}_{q} be the field with q elements and

$$
\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

 Randomised algorithms Constructive recognition Troubles
Reduction

Permutation groups and matrix groups

Let $n \in \mathbb{N}$ and S_{n} be the symmetric group:

$$
S_{n}=\{\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \pi \text { bijective }\}
$$

Let \mathbb{F}_{q} be the field with q elements and

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms Constructive recognition Troubles

Reduction

Permutation groups and matrix groups

Let $n \in \mathbb{N}$ and S_{n} be the symmetric group:

$$
S_{n}=\{\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \pi \text { bijective }\}
$$

Given: $\pi_{1}, \ldots, \pi_{k} \in S_{n}$

Let \mathbb{F}_{q} be the field with q elements and

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms Construative recognition Troubles

Reduction

Permutation groups and matrix groups

Let $n \in \mathbb{N}$ and S_{n} be the symmetric group:

$$
S_{n}=\{\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \pi \text { bijective }\}
$$

Given: $\pi_{1}, \ldots, \pi_{k} \in S_{n}$
Then the π_{i} generate a group $G \leq S_{n}$.

Let \mathbb{F}_{q} be the field with q elements and

$$
\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms Construative recognition Troubles

Reduction

Permutation groups and matrix groups

Let $n \in \mathbb{N}$ and S_{n} be the symmetric group:

$$
S_{n}=\{\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \pi \text { bijective }\} .
$$

Given: $\pi_{1}, \ldots, \pi_{k} \in S_{n}$
Then the π_{i} generate a group $G \leq S_{n}$.
It is finite, we have $\left|S_{n}\right|=n$!

Let \mathbb{F}_{q} be the field with q elements and

$$
\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n} \mid M \text { invertible }\right\}
$$

Given: $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
Then the M_{i} generate a group $G \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$.
It is finite, we have $\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$

Introduction

Matrix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms Construative recognition Troubles

Reduction

Permutation groups
Let $n \in \mathbb{N}$ and S_{n} be the symmetric group:

$$
S_{n}=\{\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \pi \text { bijective }\} .
$$

Given: $\pi_{1}, \ldots, \pi_{k} \in S_{n}$
Then the π_{i} generate a group $G \leq S_{n}$.
It is finite, we have $\left|S_{n}\right|=n!$.
We can determine about G algorithmically (e.g.):

- The group order |G|
- Membership test: Is $M \in S_{n}$ in G ?
- Homomorphisms $\varphi: G \rightarrow H$?
- Kernels of homomorphisms? Is G simple?
- Comparison with known groups
- (Maximal) subgroups?
- ...

Matrix group

 recognitionMax Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles
Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Classifications

Recognition of the groups Standard generators

Verification

Matrix groups in GAP

In standard GAP:

```
gap> ugens;
[ <an immutable 56x56 matrix over GF2>,
    <an immutable 56x56 matrix over GF2> ]
gap> u := Group(ugens);;
gap> Size(u); time;
252000
341277
gap> Image(NiceMonomorphism(u));
<permutation group with 2 generators>
```

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms
Construative recognition Troubles

Reduction

Matrix groups in GAP

In standard GAP:

```
gap> ugens;
[ <an immutable 56x56 matrix over GF2>,
    <an immutable 56x56 matrix over GF2> ]
gap> u := Group(ugens);;
gap> Size(u); time;
252000
341277
gap> Image(NiceMonomorphism(u));
<permutation group with 2 generators>
```

Using the upcoming genss package (with F. Noeske):
gap> Size(StabilizerChain(u)); time; 252000
1368

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Construative recognition Troubles

Reduction

Matrix groups in GAP

In standard GAP:

```
gap> ugens;
[ <an immutable 56x56 matrix over GF2>,
    <an immutable 56x56 matrix over GF2> ]
gap> u := Group(ugens);;
gap> Size(u); time;
252000
341277
gap> Image(NiceMonomorphism(u));
<permutation group with 2 generators>
```

Using the upcoming genss package (with F. Noeske):

```
gap> Size(StabilizerChain(u)); time;
252000
1368
```

For "bigger" matrix groups both approaches do not work.

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition Troubles

Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Constructive recognition - first formulation

Problem

Let \mathbb{F}_{q} be the field with q elements and

$$
M_{1}, \ldots, M_{k} \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)
$$

Find for $G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$,
- decides, whether or not $M \in G$ and
- if so, expresses M as word in the M_{i}.

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Constructive recognition — first formulation

Problem

Let \mathbb{F}_{q} be the field with q elements and

$$
M_{1}, \ldots, M_{k} \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)
$$

Find for $G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$,
- decides, whether or not $M \in G$ and
- if so, expresses M as word in the M_{i}.

If this problem is solved, we call
$\left\langle M_{1}, \ldots, M_{k}\right\rangle$ recognised constructively.

Complexity of algorithms

To measure the efficiency of an algorithm, we consider a class \mathcal{P} of problems, that the algorithm can solve.

We assign to each $P \in \mathcal{P}$ its size $g(P)$, and prove an upper bound for the runtime $L(P)$ of the algorithm for P :

$$
L(P) \leq f(g(P))
$$

for some function f.

Complexity of algorithms

To measure the efficiency of an algorithm, we consider a class \mathcal{P} of problems, that the algorithm can solve.

We assign to each $P \in \mathcal{P}$ its size $g(P)$, and prove an upper bound for the runtime $L(P)$ of the algorithm for P :

$$
L(P) \leq f(g(P))
$$

for some function f.
The growth rate of f measures the complexity.

Complexity of algorithms

To measure the efficiency of an algorithm, we consider a class \mathcal{P} of problems, that the algorithm can solve.

We assign to each $P \in \mathcal{P}$ its size $g(P)$, and prove an upper bound for the runtime $L(P)$ of the algorithm for P :

$$
L(P) \leq f(g(P))
$$

for some function f.
The growth rate of f measures the complexity.

Example (Constructive matrix group recognition)

- Problem given by $M_{1}, \ldots, M_{k} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.
- Size determined by n, k and $\log q$.
- Runtime should be \leq a polynomial in n, k and $\log q$.

Matrix group recognition

Max Neunhöffer

Introduction
Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our
implementation

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it returns a wrong result is at most ϵ.

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it returns a wrong result is at most ϵ.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it fails is at most ϵ.

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it returns a wrong result is at most ϵ.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it fails is at most ϵ.

Example: Comp. of $|G|=4089470473293004800$ for permutation group $G=\left\langle\pi_{1}, \pi_{2}\right\rangle(n=137632)$:

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it returns a wrong result is at most ϵ.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it fails is at most ϵ.

Example: Comp. of $|G|=4089470473293004800$ for permutation group $G=\left\langle\pi_{1}, \pi_{2}\right\rangle(n=137632)$: deterministic alg.: 112s

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it returns a wrong result is at most ϵ.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it fails is at most ϵ.

Example: Comp. of $|G|=4089470473293004800$ for permutation group $G=\left\langle\pi_{1}, \pi_{2}\right\rangle(n=137632)$: deterministic alg.: 112s Monte Carlo $\epsilon=1 \%$: 6 s Saving: 95% of runtime

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Classifications

Recognition of the groups Standard generators

Verification

Constructive recognition

Problem

Let \mathbb{F}_{q} be the field with q elements und

$$
M_{1}, \ldots, M_{k} \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)
$$

Find for $G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$,
- decides, whether or not $M \in G$, and,
- if so, expresses M as word in the M_{i}.

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Constructive recognition

Problem

Let \mathbb{F}_{q} be the field with q elements und

$$
M_{1}, \ldots, M_{k} \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)
$$

Find for $G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$,
- decides, whether or not $M \in G$, and,
- if so, expresses M as word in the M_{i}.
- The runtime should be bounded from above by a polynomial in n, k and $\log q$.

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory

Constructive recognition

Problem

Let \mathbb{F}_{q} be the field with q elements und

$$
M_{1}, \ldots, M_{k} \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)
$$

Find for $G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$,
- decides, whether or not $M \in G$, and,
- if so, expresses M as word in the M_{i}.
- The runtime should be bounded from above by a polynomial in n, k and $\log q$.
- A Monte Carlo Algorithmus is enough.

Introduction

Matrix groups Constructive recognition

The problem
Complexity theory

Constructive recognition

Problem

Let \mathbb{F}_{q} be the field with q elements und

$$
M_{1}, \ldots, M_{k} \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)
$$

Find for $G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$,
- decides, whether or not $M \in G$, and,
- if so, expresses M as word in the M_{i}.
- The runtime should be bounded from above by a polynomial in n, k and $\log q$.
- A Monte Carlo Algorithmus is enough. (Verification!)

Introduction

Matrix groups Constructive recognition
The problem

Complexity theory

Reduction

Constructive recognition

Problem

Let \mathbb{F}_{q} be the field with q elements und

$$
M_{1}, \ldots, M_{k} \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)
$$

Find for $G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle$:

- The group order $|G|$ and
- an algorithm that, given $M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$,
- decides, whether or not $M \in G$, and,
- if so, expresses M as word in the M_{i}.
- The runtime should be bounded from above by a polynomial in n, k and $\log q$.
- A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call $\left\langle M_{1}, \ldots, M_{k}\right\rangle$ recognised constructively.

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our
implementation

Troubles

The discrete logarithm problem

If $M_{1}=[z] \in \mathbb{F}_{q}^{1 \times 1}$ with z a primitive root of \mathbb{F}_{q}. Then:
Given $0 \neq[x] \in \mathbb{F}_{q}^{1 \times 1}$, find $i \in \mathbb{N}$ such that $[x]=[z]^{i}$.

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant

subspace

Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our
implementation

Troubles

The discrete logarithm problem

If $M_{1}=[z] \in \mathbb{F}_{q}^{1 \times 1}$ with z a primitive root of \mathbb{F}_{q}. Then:
Given $0 \neq[x] \in \mathbb{F}_{q}^{1 \times 1}$, find $i \in \mathbb{N}$ such that $[x]=[z]^{i}$.
There is no solution in polynomial time in $\log q$ known!

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel

Troubles

The discrete logarithm problem

If $M_{1}=[z] \in \mathbb{F}_{q}^{1 \times 1}$ with z a primitive root of \mathbb{F}_{q}. Then:
Given $0 \neq[x] \in \mathbb{F}_{q}^{1 \times 1}$, find $i \in \mathbb{N}$ such that $[x]=[z]^{i}$.
There is no solution in polynomial time in $\log q$ known!

Integer factorisation

Some methods need a factorisation of $q^{i}-1$ for an $i \leq n$.

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel

Troubles

The discrete logarithm problem

If $M_{1}=[z] \in \mathbb{F}_{q}^{1 \times 1}$ with z a primitive root of \mathbb{F}_{q}. Then:
Given $0 \neq[x] \in \mathbb{F}_{q}^{1 \times 1}$, find $i \in \mathbb{N}$ such that $[x]=[z]^{i}$.
There is no solution in polynomial time in $\log q$ known!

Integer factorisation

Some methods need a factorisation of $q^{i}-1$ for an $i \leq n$.
There is no solution in polynomial time in $\log q$ known!

Troubles

The discrete logarithm problem

If $M_{1}=[z] \in \mathbb{F}_{q}^{1 \times 1}$ with z a primitive root of \mathbb{F}_{q}. Then:
Given $0 \neq[x] \in \mathbb{F}_{q}^{1 \times 1}$, find $i \in \mathbb{N}$ such that $[x]=[z]^{i}$.
There is no solution in polynomial time in $\log q$ known!

Integer factorisation

Some methods need a factorisation of $q^{i}-1$ for an $i \leq n$.
There is no solution in polynomial time in $\log q$ known!
In practice q is small \Rightarrow no problem.
We ignore both!

Matrix group recognition

Max Neunhöffer

Introduction
Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms

Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

What is a reduction?

Let $G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$.

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our implementation

What is a reduction?

$$
\text { Let } G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right) \text {. }
$$

A reduction is a group homomorphism

$$
\begin{array}{rllll}
\varphi: & G & \rightarrow & H \\
& M_{i} & \mapsto & P_{i} & \text { for all } i
\end{array}
$$

with the following properties:

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications

What is a reduction?

$$
\text { Let } G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right) \text {. }
$$

A reduction is a group homomorphism

$$
\begin{array}{rllll}
\varphi: & G & \rightarrow & H \\
& M_{i} & \mapsto & P_{i} & \text { for all } i
\end{array}
$$

with the following properties:

- $\varphi(M)$ is explicitly computable for all $M \in G$

Matrix group recognition

Max Neunhöffer

Introduction
Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our implementation

What is a reduction?

$$
\text { Let } G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right) \text {. }
$$

A reduction is a group homomorphism

$$
\begin{aligned}
\varphi: & G
\end{aligned} \rightarrow H
$$

with the following properties:

- $\varphi(M)$ is explicitly computable for all $M \in G$
- φ is surjective: $H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$

What is a reduction?

$$
\text { Let } G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right) \text {. }
$$

A reduction is a group homomorphism

$$
\begin{array}{rllll}
\varphi: & G & \rightarrow & H \\
& M_{i} & \mapsto & P_{i} & \text { for all } i
\end{array}
$$

with the following properties:

- $\varphi(M)$ is explicitly computable for all $M \in G$
- φ is surjective: $H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$
- H is in some sense "smaller"
- or at least "easier to recognise constructively"

What is a reduction?

$$
\text { Let } G:=\left\langle M_{1}, \ldots, M_{k}\right\rangle \leq \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right) \text {. }
$$

A reduction is a group homomorphism

$$
\begin{aligned}
\varphi: & G
\end{aligned} \rightarrow H
$$

with the following properties:

- $\varphi(M)$ is explicitly computable for all $M \in G$
- φ is surjective: $H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$
- H is in some sense "smaller"
- or at least "easier to recognise constructively"
- e.g. $H \leq S_{m}$ or $H \leq \mathrm{GL}_{n^{\prime}}\left(\mathbb{F}_{q^{\prime}}\right)$ with $n^{\prime} \log q^{\prime}<n \log q$

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our
implementation

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles
Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our
implementation

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :
(1) Generate a (pseudo-) random element $M \in G$,

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms Constructive recognition Troubles

Reduction

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :
(1) Generate a (pseudo-) random element $M \in G$,
(2) map it with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algoritims Constructive recognition Troubles

Reduction

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :
(1) Generate a (pseudo-) random element $M \in G$,
(2) map it with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(3) express $\varphi(M)$ as word in the P_{i},

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :
(1) Generate a (pseudo-) random element $M \in G$,
(2) map it with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(3) express $\varphi(M)$ as word in the P_{i},
(4) evaluate the same word in the M_{i},

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :
(1) Generate a (pseudo-) random element $M \in G$,
(2) map it with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(3) express $\varphi(M)$ as word in the P_{i},
(4) evaluate the same word in the M_{i},
(5) get element $M^{\prime} \in G$ with $M \cdot M^{\prime-1} \in N$.

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :
(1) Generate a (pseudo-) random element $M \in G$,
(2) map it with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(3) express $\varphi(M)$ as word in the P_{i},
(4) evaluate the same word in the M_{i},
(5) get element $M^{\prime} \in G$ with $M \cdot M^{\prime-1} \in N$.
(6) If M is uniformly distributed in G then $M \cdot M^{\prime-1}$ is uniformly distributed in N

Reduction

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :
(1) Generate a (pseudo-) random element $M \in G$,
(2) map it with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(3) express $\varphi(M)$ as word in the P_{i},
(4) evaluate the same word in the M_{i},
(5) get element $M^{\prime} \in G$ with $M \cdot M^{\prime-1} \in N$.
(6) If M is uniformly distributed in G then $M \cdot M^{\prime-1}$ is uniformly distributed in N
(3) Repeat.

Reduction

Computing the kernel

Let $\varphi: G \rightarrow H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel N of φ :
(1) Generate a (pseudo-) random element $M \in G$,
(2) map it with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(3) express $\varphi(M)$ as word in the P_{i},
(4) evaluate the same word in the M_{i},
(5) get element $M^{\prime} \in G$ with $M \cdot M^{\prime-1} \in N$.
(6) If M is uniformly distributed in G then $M \cdot M^{\prime-1}$ is uniformly distributed in N
(3) Repeat.
\rightarrow Monte Carlo algorithm to compute N

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our
implementation

Recognising image and kernel suffices
Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Reduction

Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| .
$$

Reduction

Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| . \text { And for } M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):
$$

Recognising image and kernel suffices
Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| . \text { And for } M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):
$$

(1) map M with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,

Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| . \text { And for } M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):
$$

(1) map M with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(2) express $\varphi(M)$ as word in the P_{i},

Recognising image and kernel suffices
Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| . \text { And for } M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):
$$

(1) map M with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(2) express $\varphi(M)$ as word in the P_{i},
(3) evaluate the same word in the M_{i},

Recognising image and kernel suffices

Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| . \text { And for } M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):
$$

(1) map M with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(2) express $\varphi(M)$ as word in the P_{i},
(3) evaluate the same word in the M_{i},
(4) get element $M^{\prime} \in G$ such that $M \cdot M^{\prime-1} \in N$,

Reduction

Recognising image and kernel suffices

Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| . \text { And for } M \in \operatorname{GL}_{n}\left(\mathbb{F}_{q}\right):
$$

(1) map M with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(2) express $\varphi(M)$ as word in the P_{i},
(3) evaluate the same word in the M_{i},
(4) get element $M^{\prime} \in G$ such that $M \cdot M^{\prime-1} \in N$,
(5) express $M \cdot M^{\prime-1}$ as word in the N_{j},

Recognising image and kernel suffices
Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| . \text { And for } M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):
$$

(1) map M with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(2) express $\varphi(M)$ as word in the P_{i},
(3) evaluate the same word in the M_{i},
(4) get element $M^{\prime} \in G$ such that $M \cdot M^{\prime-1} \in N$,
(5) express $M \cdot M^{\prime-1}$ as word in the N_{j},
(6) get M as word in the M_{i} and N_{j} :
$M^{\prime}=\prod$ in the $M_{i}, \quad M \cdot M^{\prime-1}=\prod$ in the N_{j}
$\Rightarrow M=\left(\prod\right.$ in the $\left.N_{j}\right) \cdot\left(\prod\right.$ in the $\left.M_{i}\right)$.

Recognising image and kernel suffices
Let $\varphi: G \rightarrow H$ be a reduction and assume that both H and the kernel $N=\left\langle N_{1}, \ldots, N_{m}\right\rangle$ of φ are already recognised constructively.

Then we have recognised G constructively:

$$
|G|=|H| \cdot|N| . \text { And for } M \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right):
$$

(1) map M with φ onto $\varphi(M) \in H=\left\langle P_{1}, \ldots, P_{k}\right\rangle$,
(2) express $\varphi(M)$ as word in the P_{i},
(3) evaluate the same word in the M_{i},
(4) get element $M^{\prime} \in G$ such that $M \cdot M^{\prime-1} \in N$,
(5) express $M \cdot M^{\prime-1}$ as word in the N_{j},
(6) get M as word in the M_{i} and N_{j} :
$M^{\prime}=\prod$ in the $M_{i}, \quad M \cdot M^{\prime-1}=\prod$ in the N_{j}
$\Rightarrow M=\left(\prod\right.$ in the $\left.N_{j}\right) \cdot\left(\prod\right.$ in the $\left.M_{i}\right)$.
(If $M \notin G$, then at least one step does not work.

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

Recursion: composition trees
We get a tree:

Up arrows: inclusions
Down arrows: homomorphisms

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Classifications

Recognition of the groups
Standard generators

Verification

Status of our
implementation

Recursion: composition trees
We get a tree:

Up arrows: inclusions
Down arrows: homomorphisms

Introduction

Matrix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Cliassifications

Recognition of the groups Standard generators

Verification

Status of our
implementation

Recursion: composition trees
We get a tree:

Up arrows: inclusions
Down arrows: homomorphisms
Old idea, substantial improvements: Seress \& N. 2006

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

Example: invariant subspace

Let $V=\mathbb{F}_{q}^{n}$, then G acts on V. Let $W \leq V$ be an invariant subspace, i.e.:

$$
M W=W \text { for all } M \in G
$$

Example: invariant subspace

Let $V=\mathbb{F}_{q}^{n}$, then G acts on V.
Let $W \leq V$ be an invariant subspace, i.e.:

$$
M W=W \quad \text { for all } M \in G
$$

Choose basis $\left(w_{1}, \ldots, w_{d}\right)$ of W and extend to a basis

$$
\left(w_{1}, \ldots, w_{d}, w_{d+1}, \ldots, w_{n}\right)
$$

of V. After a base change the matrices in G look like this:
$\left[\begin{array}{c|c}A & B \\ \hline \mathbf{0} & D\end{array}\right] \quad$ with $A \in \mathbb{F}_{q}^{d \times d}, B \in \mathbb{F}_{q}^{d \times(n-d)}, D \in \mathbb{F}_{q}^{(n-d) \times(n-d)}$

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory

Reduction

Example: invariant subspace

Let $V=\mathbb{F}_{q}^{n}$, then G acts on V.
Let $W \leq V$ be an invariant subspace, i.e.:

$$
M W=W \text { for all } M \in G
$$

Choose basis $\left(w_{1}, \ldots, w_{d}\right)$ of W and extend to a basis

$$
\left(w_{1}, \ldots, w_{d}, w_{d+1}, \ldots, w_{n}\right)
$$

of V. After a base change the matrices in G look like this:

$$
\left[\begin{array}{c|c}
A & B \\
\hline \mathbf{0} & D
\end{array}\right]
$$

$$
\text { with } A \in \mathbb{F}_{q}^{d \times d}, B \in \mathbb{F}_{q}^{d \times(n-d)}, D \in \mathbb{F}_{q}^{(n-d) \times(n-d)}
$$

and

$$
G \rightarrow \mathrm{GL}_{n-d}\left(\mathbb{F}_{q}\right),\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right] \mapsto D
$$

is a homomorphism of groups.

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our implementation

Example: invariant subspace

$$
G \rightarrow \mathrm{GL}_{n-d}\left(\mathbb{F}_{q}\right),\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right] \mapsto D
$$

is a homomorphism of groups, its kernel is

$$
N:=\left\{\left.\left[\begin{array}{cc}
A & B \\
\mathbf{0} & D
\end{array}\right] \in G \right\rvert\, D=\mathbf{1}\right\} .
$$

Introduction

Martix groups

Constructive recognition
The problem

Complexity theory

Randomised algorititms
Construative recognition Troubles

Reduction

Example: invariant subspace

$$
G \rightarrow \mathrm{GL}_{n-d}\left(\mathbb{F}_{q}\right),\left[\begin{array}{cc}
A & B \\
\mathbf{0} & D
\end{array}\right] \mapsto D
$$

is a homomorphism of groups, its kernel is

$$
N:=\left\{\left.\left[\begin{array}{ll}
A & B \\
\mathbf{0} & D
\end{array}\right] \in G \right\rvert\, D=\mathbf{1}\right\} .
$$

The mapping

$$
N \rightarrow \mathrm{GL}_{d}\left(\mathbb{F}_{q}\right),\left[\begin{array}{cc}
A & B \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \mapsto A
$$

also is a homomorphism of groups and has kernel

$$
N_{2}:=\left\{\left.\left[\begin{array}{ll}
A & B \\
0 & D
\end{array}\right] \in G \right\rvert\, A=D=\mathbf{1}\right\} .
$$

Introduction

Martix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms Construative recognition Troubles

Reduction

Example: invariant subspace

$$
G \rightarrow \mathrm{GL}_{n-d}\left(\mathbb{F}_{q}\right),\left[\begin{array}{cc}
A & B \\
\mathbf{0} & D
\end{array}\right] \mapsto D
$$

is a homomorphism of groups, its kernel is

$$
N:=\left\{\left.\left[\begin{array}{ll}
A & B \\
\mathbf{0} & D
\end{array}\right] \in G \right\rvert\, D=\mathbf{1}\right\} .
$$

The mapping

$$
N \rightarrow \mathrm{GL}_{d}\left(\mathbb{F}_{q}\right),\left[\begin{array}{cc}
A & B \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \mapsto A
$$

also is a homomorphism of groups and has kernel

$$
N_{2}:=\left\{\left.\left[\begin{array}{ll}
A & B \\
\mathbf{0} & D
\end{array}\right] \in G \right\rvert\, A=D=\mathbf{1}\right\} .
$$

This group is a p-group for $q=p^{e}$:

$$
\left[\begin{array}{ll}
1 & B \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & B^{\prime} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & B+B^{\prime} \\
0 & 1
\end{array}\right]
$$

Introduction

Martix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms Construative recognition Troubles

Reduction

Example: invariant subspace

$$
G \rightarrow \mathrm{GL}_{n-d}\left(\mathbb{F}_{q}\right),\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right] \mapsto D
$$

is a homomorphism of groups, its kernel is

$$
N:=\left\{\left.\left[\begin{array}{ll}
A & B \\
\mathbf{0} & D
\end{array}\right] \in G \right\rvert\, D=\mathbf{1}\right\} .
$$

The mapping

$$
N \rightarrow \mathrm{GL}_{d}\left(\mathbb{F}_{q}\right),\left[\begin{array}{cc}
A & B \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \mapsto A
$$

also is a homomorphism of groups and has kernel

$$
N_{2}:=\left\{\left.\left[\begin{array}{ll}
A & B \\
\mathbf{0} & D
\end{array}\right] \in G \right\rvert\, A=D=\mathbf{1}\right\} .
$$

This group is a p-group for $q=p^{e}$:

$$
\left[\begin{array}{ll}
1 & B \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
\mathbf{1} & B^{\prime} \\
\mathbf{0} & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & B+B^{\prime} \\
\mathbf{0} & \mathbf{1}
\end{array}\right]
$$

Together with a reduction additional information is gained!

Verification

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles
Reduction
Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

How to find reductions?
Aschbacher has defined classes C1 to C8 of subgroups of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.

How to find reductions?

Aschbacher has defined classes C 1 to C 8 of subgroups of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.

Theorem (Aschbacher, 1984)

Let $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $Z:=G \cap Z\left(\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right)$ the subgroup of scalar matrices. Then G lies in at least one of the classes C1 to C8 or we have:

- $T \subseteq G / Z \subseteq \operatorname{Aut}(T)$ for a non-abelian simple group T, and
- G acts absolutely irreducibly on $V=\mathbb{F}_{q}^{n}$.

How to find reductions?

Aschbacher has defined classes C 1 to C 8 of subgroups of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.

Theorem (Aschbacher, 1984)

Let $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $Z:=G \cap Z\left(\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right)$ the subgroup of scalar matrices. Then G lies in at least one of the classes C1 to C8 or we have:

- $T \subseteq G / Z \subseteq \operatorname{Aut}(T)$
for a non-abelian simple group T, and
- G acts absolutely irreducibly on $V=\mathbb{F}_{q}^{n}$.
(This last case is called C9.)

How to find reductions?

Aschbacher has defined classes C1 to C8 of subgroups of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.

Theorem (Aschbacher, 1984)

Let $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $Z:=G \cap Z\left(\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right)$ the subgroup of scalar matrices. Then G lies in at least one of the classes C1 to C8 or we have:

- $T \subseteq G / Z \subseteq \operatorname{Aut}(T)$ for a non-abelian simple group T, and
- G acts absolutely irreducibly on $V=\mathbb{F}_{q}^{n}$.
(This last case is called C9.)
Thus we can call in heavy artillery:
- the classification of finite simple groups

How to find reductions?

Aschbacher has defined classes C 1 to C 8 of subgroups of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.

Theorem (Aschbacher, 1984)

Let $G \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $Z:=G \cap Z\left(\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right)$ the subgroup of scalar matrices. Then G lies in at least one of the classes C1 to C8 or we have:

- $T \subseteq G / Z \subseteq \operatorname{Aut}(T)$ for a non-abelian simple group T, and
- G acts absolutely irreducibly on $V=\mathbb{F}_{q}^{n}$.
(This last case is called C9.)
Thus we can call in heavy artillery:
- the classification of finite simple groups
- the modular representation theory of simple groups

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition

trees

Example: invariant
subspace
Finding reductions
Solution for leaves
Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

Approach for leaves of the tree If none of the algorithms for C1 to C8 has succeeded:

Reduction

Homomorphisms
Computing the kernel
Recursion: composition

trees

Example: invariant subspace
Finding reductions
Solution for leaves Classifications

Approach for leaves of the tree If none of the algorithms for C 1 to C 8 has succeeded:

- For "small" groups compute direct isomorphism onto a permutation group.

Introduction

Martix groups

Constructive recognition
The problem
Complexity theory
Randomised algoritims
Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Classsifications

Approach for leaves of the tree If none of the algorithms for C 1 to C 8 has succeeded:
(1) For "small" groups compute direct isomorphism onto a permutation group.
(2) Determine, for which (simple) group $T \leq G / Z \leq \operatorname{Aut}(T)$ holds.

Approach for leaves of the tree

If none of the algorithms for C 1 to C 8 has succeeded:
(1) For "small" groups compute direct isomorphism onto a permutation group.
(2) Determine, for which (simple) group $T \leq G / Z \leq \operatorname{Aut}(T)$ holds.
(3) Find an explicit isomorphism onto a "standard copy" of an intermediate group S.

Approach for leaves of the tree

If none of the algorithms for C 1 to C 8 has succeeded:
© For "small" groups compute direct isomorphism onto a permutation group.
(2) Determine, for which (simple) group $T \leq G / Z \leq \operatorname{Aut}(T)$ holds.
(3) Find an explicit isomorphism onto a "standard copy" of an intermediate group S.
(4) Finally use information about S to recognise G constructively.

Approach for leaves of the tree

If none of the algorithms for C 1 to C 8 has succeeded:
© For "small" groups compute direct isomorphism onto a permutation group.
(2) Determine, for which (simple) group $T \leq G / Z \leq \operatorname{Aut}(T)$ holds.
(3) Find an explicit isomorphism onto a "standard copy" of an intermediate group S.
(0) Finally use information about S to recognise G constructively.
This uses:

- the classification of finite simple groups
- information about their automorphism groups
- information about element orders
- information about conjugacy classes
- classifications of the irreducible representations
- information about the subgroup structure

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles
Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our implementation

Non-constructive recognition

Methods for non-constructive recognition:

- Knowledge about representations narrows down the possibilities

Non-constructive recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorititms
Construative recognition Troubles

Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace

Methods for non-constructive recognition:

- Knowledge about representations narrows down the possibilities
- Statistics about orders of random elements

Non-constructive recognition

Max Neunhöffer

Introduction

Martix groups
Constructive recognition
The problem
Complexity theory
Randomised algoritims
Construative recognition Troubles

Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves
Methods for non-constructive recognition:

- Knowledge about representations narrows down the possibilities
- Statistics about orders of random elements

Usually this leads to Monte Carlo algorithms.

Matrix group recognition

Max Neunhöffer

Introduction
Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant subspace
Finding reductions
Solution for leaves

Classifications

Recognition of the groups
Standard generators
Verification
Status of our
implementation

Standard generators

In G we can only multiply, invert and compute orders.

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups
Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.
Find a tuple $\left(s_{1}, \ldots, s_{r}\right) \in S^{r}$ together with certain words p_{1}, \ldots, p_{m} in the s_{i}, such that:

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.
Find a tuple $\left(s_{1}, \ldots, s_{r}\right) \in S^{r}$ together with certain words p_{1}, \ldots, p_{m} in the s_{i}, such that:

- $S=\left\langle s_{1}, \ldots, s_{r}\right\rangle$,

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.

Find a tuple $\left(s_{1}, \ldots, s_{r}\right) \in S^{r}$ together with certain words p_{1}, \ldots, p_{m} in the s_{i}, such that:

- $S=\left\langle s_{1}, \ldots, s_{r}\right\rangle$,
- if $\left(s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right) \in S^{r}$ with
- $\left|s_{i}\right|=\left|s_{i}^{\prime}\right|$ for $1 \leq i \leq r$,
- $\left|p_{j}\right|=\left|p_{j}^{\prime}\right|$ for $1 \leq j \leq m$ (the p_{j}^{\prime} are the same words in the s_{i}^{\prime}),

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.

Find a tuple $\left(s_{1}, \ldots, s_{r}\right) \in S^{r}$ together with certain words p_{1}, \ldots, p_{m} in the s_{i}, such that:

- $S=\left\langle s_{1}, \ldots, s_{r}\right\rangle$,
- if $\left(s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right) \in S^{r}$ with
- $\left|s_{i}\right|=\left|s_{i}^{\prime}\right|$ for $1 \leq i \leq r$,
- $\left|p_{j}\right|=\left|p_{j}^{\prime}\right|$ for $1 \leq j \leq m$ (the p_{j}^{\prime} are the same words in the s_{i}^{\prime}),
then $s_{i} \mapsto s_{i}^{\prime}$ for $1 \leq i \leq r$ defines an automorphism of S.

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.

Find a tuple $\left(s_{1}, \ldots, s_{r}\right) \in S^{r}$ together with certain words p_{1}, \ldots, p_{m} in the s_{i}, such that:

- $S=\left\langle s_{1}, \ldots, s_{r}\right\rangle$,
- if $\left(s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right) \in S^{r}$ with
- $\left|s_{i}\right|=\left|s_{i}^{\prime}\right|$ for $1 \leq i \leq r$,
- $\left|p_{j}\right|=\left|p_{j}^{\prime}\right|$ for $1 \leq j \leq m$ (the p_{j}^{\prime} are the same words in the s_{i}^{\prime}),
then $s_{i} \mapsto s_{i}^{\prime}$ for $1 \leq i \leq r$ defines an automorphism of S.

Such elements are called "standard generators" of S.

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.

Find a tuple $\left(s_{1}, \ldots, s_{r}\right) \in S^{r}$ together with certain words p_{1}, \ldots, p_{m} in the s_{i}, such that:

- $S=\left\langle s_{1}, \ldots, s_{r}\right\rangle$,
- if $\left(s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right) \in S^{r}$ with
- $\left|s_{i}\right|=\left|s_{i}^{\prime}\right|$ for $1 \leq i \leq r$,
- $\left|p_{j}\right|=\left|p_{j}^{\prime}\right|$ for $1 \leq j \leq m$ (the p_{j}^{\prime} are the same words in the s_{i}^{\prime}),
then $s_{i} \mapsto s_{i}^{\prime}$ for $1 \leq i \leq r$ defines an automorphism of S.

Such elements are called "standard generators" of S.
We find $G \cong S$ explicitly by finding a tuple $\left(M_{1}, \ldots, M_{r}\right)$ of standard generators in G.

Standard generators

In G we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq \operatorname{Aut}(T)$ and T simple.
Find a tuple $\left(s_{1}, \ldots, s_{r}\right) \in S^{r}$ together with certain words p_{1}, \ldots, p_{m} in the s_{i}, such that:

- $S=\left\langle s_{1}, \ldots, s_{r}\right\rangle$,
- if $\left(s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right) \in S^{r}$ with
- $\left|s_{i}\right|=\left|s_{i}^{\prime}\right|$ for $1 \leq i \leq r$,
- $\left|p_{j}\right|=\left|p_{j}^{\prime}\right|$ for $1 \leq j \leq m$ (the p_{j}^{\prime} are the same words in the s_{i}^{\prime}),
then $s_{i} \mapsto s_{i}^{\prime}$ for $1 \leq i \leq r$ defines an automorphism of S.
Such elements are called "standard generators" of S.
We find $G \cong S$ explicitly by finding a tuple $\left(M_{1}, \ldots, M_{r}\right)$ of standard generators in G.
Often this leads to efficient Las Vegas algorithms to find explicit isomorphisms.

Verification

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles
Reduction
Homomorphisms
Computing the kernel
Recursion: composition
trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups
Standard generators
Verification
Status of our
implementation

Everywhere we used randomised methods: Las Vegas and Monte Carlo.

\Rightarrow We have to check whether our result is correct!

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algorithms
Constructive recognition
Troubles
Reduction
Homomorphisms
Computing the kernel
Recursion: composition

trees

Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our
implementation

Everywhere we used randomised methods: Las Vegas and Monte Carlo.
\Rightarrow We have to check whether our result is correct!
Idea:

- Find (short) presentations for the leaf-groups,

Verification

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem
Complexity theory
Randomised algoritims
Construative recognition Troubles

Reduction
Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves

Everywhere we used randomised methods: Las Vegas and Monte Carlo.
\Rightarrow We have to check whether our result is correct!
Idea:

- Find (short) presentations for the leaf-groups,
- put these together to one for the whole group.

Verification

Everywhere we used randomised methods: Las Vegas and Monte Carlo.
\Rightarrow We have to check whether our result is correct!
Idea:

- Find (short) presentations for the leaf-groups,
- put these together to one for the whole group.
- Check the relations and thus prove the result.

Matrix group recognition

Max Neunhöffer

Introduction

Matrix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition
Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition

trees

Example: invariant subspace
Finding reductions
Solution for leaves Classifications
Recognition of the groups Standard generators

Verification
Status of our implementation

Status of our implementation

We have

- a package recogbase providing a framework to implement recognition algorithms and composition trees (Ákos Seress, N.),

Introduction

Matrix groups

Constructive recognition
The problem

Complexity theory

Randomised algorithms
Constructive recognition Troubles

Reduction

Homomorphisms
Computing the kernel
Recursion: composition trees
Example: invariant subspace
Finding reductions
Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Status of our implementation

We have

- a package recogbase providing a framework to implement recognition algorithms and composition trees (Ákos Seress, N.),
- a package recog collecting methods to find reductions and recognise leafs constructively,

Status of our implementation

We have

- a package recogbase providing a framework to implement recognition algorithms and composition trees (Ákos Seress, N.),
- a package recog collecting methods to find reductions and recognise leafs constructively, Authors (currently): P. Brooksbank, M. Law, S. Linton, N., A. Niemeyer, E. O'Brien, Á. Seress,

Status of our implementation

We have

- a package recogbase providing a framework to implement recognition algorithms and composition trees (Ákos Seress, N.),
- a package recog collecting methods to find reductions and recognise leafs constructively, Authors (currently): P. Brooksbank, M. Law, S. Linton, N., A. Niemeyer, E. O'Brien, Á. Seress,
- complete asymptotically best methods to handle permutation groups,

Status of our implementation

We have

- a package recogbase providing a framework to implement recognition algorithms and composition trees (Ákos Seress, N.),
- a package recog collecting methods to find reductions and recognise leafs constructively, Authors (currently): P. Brooksbank, M. Law, S. Linton, N., A. Niemeyer, E. O'Brien, Á. Seress,
- complete asymptotically best methods to handle permutation groups,
- methods for most Aschbacher classes for matrix groups and projective groups (some improved algorithms still needed),

Status of our implementation

We have

- a package recogbase providing a framework to implement recognition algorithms and composition trees (Ákos Seress, N.),
- a package recog collecting methods to find reductions and recognise leafs constructively, Authors (currently): P. Brooksbank, M. Law, S. Linton, N., A. Niemeyer, E. O'Brien, Á. Seress,
- complete asymptotically best methods to handle permutation groups,
- methods for most Aschbacher classes for matrix groups and projective groups (some improved algorithms still needed),
- nearly ready non-constructive recognition,

Status of our implementation

We have

- a package recogbase providing a framework to implement recognition algorithms and composition trees (Ákos Seress, N.),
- a package recog collecting methods to find reductions and recognise leafs constructively, Authors (currently): P. Brooksbank, M. Law, S. Linton, N., A. Niemeyer, E. O'Brien, Á. Seress,
- complete asymptotically best methods to handle permutation groups,
- methods for most Aschbacher classes for matrix groups and projective groups (some improved algorithms still needed),
- nearly ready non-constructive recognition,
- a few leaf methods,

Status of our implementation

We have

- a package recogbase providing a framework to implement recognition algorithms and composition trees (Ákos Seress, N.),
- a package recog collecting methods to find reductions and recognise leafs constructively, Authors (currently): P. Brooksbank, M. Law, S. Linton, N., A. Niemeyer, E. O'Brien, Á. Seress,
- complete asymptotically best methods to handle permutation groups,
- methods for most Aschbacher classes for matrix groups and projective groups (some improved algorithms still needed),
- nearly ready non-constructive recognition,
- a few leaf methods,
- no verification.

