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Basic notation and terms

There are two areas where group theory impacts most
seriously coding theory:

automorphism groups of codes and associated
F[G]-modules,
invariance properties of wt enumerator polys of f.s.d.
codes,
some improved decoding algorithms.

These will be discussed.

(Also, work of R. Liebler, K.-H. Zimmermann, A. Kerber, A. Kohnert, is
interesting....)
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Basic notation and terms

A code is a linear block code over a finite field F = GF (q), i.e.,
a subspace of Fn with a fixed basis. In the exact sequence

0 → Fk G→ Fn H→ Fn−k → 0, (1)

G represents a generating matrix (and m 7−→ mG the
encoder)
H represents a check matrix,
C = Image(G) = Kernel(H) is the code.
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Hamming weight, etc.

Hamming metric is the function d : Fn × Fn → R,

d(v, w) = |{i | vi 6= wi}| = d(v−w, 0).

the weight is wt(c) = d(c, 0)

minimum distance of C is defined to be the number
d(C) = minc6=0 wt(c).

weight distribution (or spectrum) of C is the (n + 1)-tuple
spec(C) = (A0, A1, ..., An), where

Ai = |{c ∈ C | wt(c) = i}|.
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Corresponding GAP functions.

Some associated GAP functions

AClosestVectorCombinationsMatFFEVecFFECoords
(for d(C))

DistancesDistributionMatFFEVecFFE (for spec(C),
GUAVA manual has typo)

WeightVecFFE, DistanceVecFFE (for wt(v), d(v , w))

ConwayPolynomial (calls Frank’s GPL’d database of
polynomials used to construct GF (q))

RandomPrimitivePolynomial (for random cyclic codes?)
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Associated GUAVA functions

Some associated GUAVA functions

MinimumDistance

MinimumDistanceLeon (does not call Leon’s C code)

MinimumDistanceRandom

CoveringRadius

WeightDistribution (for spec(C), should call Leon?)

DistancesDistribution (the distribution of the distances
of elements of C to a vector w)
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Automorphism group of a code

What is an automorphism of a code?

Let Sn denote the symmetric group on n letters. The
(permutation) automorphism group of a code C of length n is
simply the group

Aut(C) = {σ ∈ Sn | (c1, ..., cn) ∈ C =⇒ (cσ(1), ..., cσ(n)) ∈ C}.

There are no known methods for computing these groups
which are polynomial time in the length n of C.
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Automorphism group of a code

If

(a) C1, C2 ⊂ Fn are codes, and
(b) ∃σ ∈ Sn for which (c1, ..., cn) ∈ C1 ⇐⇒

(cσ(1), ..., cσ(n)) ∈ C2,

then C1
∼= C2 (i.e., C1 and C2 are permutation equivalent).

In GUAVA:
IsEquivalent( C1, C2 ) and CodeIsomorphism(C1, C2)

The parameters dimension and minimum distance are
invariants:
C1

∼= C2 =⇒ dim(C1) = dim(C2) and d(C1) = d(C2).
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Automorphism group of a code

C be a [n, k ]-code, G = Aut(C) = (perm.) aut. gp of C.

Define ρ : G → GLk (F), by

σ 7−→ ((c1, ..., cn) ∈ C 7−→ (cσ−1(1), ..., cσ−1(n)) ∈ C).

Therefore, C is a (modular) representation space of G.

Open Problem: Determine explicitly this representation for
common families of codes.
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Leon’s code.

Leon’s C code for computing automorphism groups of matrices
and designs and linear codes is now GPL’d. Good news:

it’s GPL’d, optimized C code,
new developers are working on GUAVA!

Drawbacks:

it has memory leaks and “home-brewed” finite fields
(should use Conway polynomials),
GUAVA only interfaces a small part of what it does.

Robert Miller and Tom Boothby recently worked on fixing up
Leon’s code.
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Leon’s code.

GUAVA functions interfacing with Leon’s code:

IsEquivalent,

CodeIsomorphism,

AutomorphismGroup,

ConstantWeightSubcode,
PermutationDecode - see below.
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Example (Aut gp of a code)

GL(2, C) acts on the projective line P1 by: z 7−→ az+b
cz+d ,(

a b
c d

)
∈ GL(2, C).

Aut(P1) = PGL(2, F )

divisor on P1 = element of Z[P1]
= formal Z-linear sum of points
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Example (Aut gp of a code)

divisor of f = div(f ) = formal sum of zeros of f minus the poles.

D = n1P1 + ... + nkPk a divisor then supp(D) = {P1, ..., Pk} is
the support of D.

Example: f = polynomial of degree n in x =⇒
div(f ) = P1 + ... + Pn − n∞, supp(div(f )) = {P1, ..., Pn,∞},
where zeros(f ) = {P1, ..., Pn}.

The abelian group of all divisors is denoted Div(P1).
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Example (Aut gp of a code)

X = P1

F (X ) = function field of X ∼= F (x), x a local coord.
D a divisor on X

Define: Riemann-Roch space L(D):

L(D) = LX (D) = {f ∈ F (X )× | div(f ) + D ≥ 0} ∪ {0},

“zeros allowed, poles required”

Example: polynomial of degree n in x ∈ L(n∞).
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RiemannRochSpaceBasisP1

Example

gap> F:=GF(11);; R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);;
gap> a:=var1[1];; b:=X(F,"b",var1);;
gap> var2:=Concatenation(var1,[b]);;
gap> R2:=PolynomialRing(F,var2);;
gap> crvP1:=AffineCurve(b,R2);
rec( ring := PolynomialRing(...,[a,b]),polynomial:=b)
gap> D:=DivisorOnAffineCurve([1,2,3,4],

[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
rec( coeffs := [ 1, 2, 3, 4 ],

support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ],
curve := rec( ring := PolynomialRing(..., [ a, b ]),

polynomial := b ) )

This sets up a divisor D = 1 · P1 + 2 · P2 + 3 · P3 + 4 · P4 on P1.
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RiemannRochSpaceBasisP1

We compute a basis for L(D) on P1 local coordinate a.
Example

gap> B:=RiemannRochSpaceBasisP1(D);
[ Z(11)^0, (Z(11)^0)/(a+Z(11)^7), (Z(11)^0)/(a+Z(11)^8),
(Z(11)^0)/(a^2+Z(11)^9*a+Z(11)^6),
(Z(11)^0)/(a+Z(11)^2),
(Z(11)^0)/(a^2+Z(11)^3*a+Z(11)^4),
(Z(11)^0)/(a^3+a^2+Z(11)^2*a+Z(11)^6),
(Z(11)^0)/(a+Z(11)^6),
(Z(11)^0)/(a^2+Z(11)^7*a+Z(11)^2),
(Z(11)^0)/(a^3+Z(11)^4*a^2+a+Z(11)^8),
(Z(11)^0)/(a^4+Z(11)^8*a^3+Z(11)*a^2+a+Z(11)^4) ]
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DivisorAutomorphismGroupP1

Next, we compute a subgroup Aut(D) ⊂ Aut(P1) preserving D.
Example

gap> agp:=DivisorAutomorphismGroupP1(D);; time;
7305
gap> IdGroup(agp);
[ 10, 2 ]

The automorphism group in this case is the dihedral group of
order 10.
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Example (Aut gp of a code)

X a curve, D ∈ Div(X ), P1, ..., Pn ∈ X (F) distinct points and
E = P1 + ... + Pn ∈ Div(X ).

Assume supp(D) ∩ supp(E) = ∅.

Choose an F-rational basis for L(D) and let L(D)F denote the
corresponding vector space over F.
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Example (Aut gp of a code)

Goppa’s idea in the case of X = P1.

The algebraic geometric code (AGCode):

C = C(D, E) = image of L(D)F under the evaluation map

evalE : L(D) → F n, f 7−→ (f (P1), ..., f (Pn)).
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Example (Aut gp of a code)

Properties:

generator matrix for C ⇐⇒ basis of L(D).
length(C) = deg(E) = n.
evalE 1− 1 =⇒ C ∼= L(D) as F[G]-modules.
X = P1 gives Reed-Solomon codes, which are MDS codes
used in CDs.

Codes with “large” aut gps can be constructed this way.

J+Ksir+Traves paper (available on web) classifies concretely the aut.
groups which can arise (in the P1 case).
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GUAVA’s non-linear codes

“Unrestricted” codes:
ElementsCode, RandomCode
HadamardCode (assumes GUAVA has associated
Hadamard matrix in it database to construct
HadamardMat( ... ))
ConferenceCode

MOLSCode (from mutually orthogonal Latin squares)
NordstromRobinsonCode (discovered by a HS
student)
GreedyCode, LexiCode

David Joyner Coding theory with GUAVA



Linear codes and coding theory functions
Methods for generating codes

Methods for decoding codes

Covering codes
Golay codes
Self-dual codes
Cyclic codes
Evaluation codes

General linear code constructions.

From the check/generator matrix or tables:

GeneratorMatCode

CheckMatCodeMutable, CheckMatCode
RandomLinearCode

OptimalityCode, BestKnownLinearCode

The last command uses tables developed by Cen Tjhal. Much
larger “best known” codes tables are needed.
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Common linear code constructions.

HammingCode,
ReedMullerCode,
SrivastavaCode,
GeneralizedSrivastavaCode

FerreroDesignCode (uses
SONATA)
(classical) GoppaCode

Figure: Richard
Hamming
(1915-1998)
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Special covering codes.

The covering radius of a linear code C is the smallest number r
with the property that each element v ∈ Fn there must be a
codeword c ∈ C with d(c, c) ≤ r .

GabidulinCode

EnlargedGabidulinCode

DavydovCode

TombakCode

EnlargedTombakCode

Much larger covering codes tables are needed.
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Golay codes.

BinaryGolayCode

ExtendedBinaryGolayCode

TernaryGolayCode

ExtendedTernaryGolayCode
Figure: Marcel
Golay (1902-1989)
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Cool example (on self-dual codes).

Group theory arises in the study of self-dual codes.

Consider the group G generated by

g1 =

(
1/
√

q 1/
√

q
(q − 1)/

√
q −1/

√
q

)
, g2 =

(
i 0
0 1

)
, g3 =

(
1 0
0 i

)
,

with q = 2. This group leaves invariant the weight enumerator
of any self-dual doubly even binary code, e.g.,
ExtendedBinaryGolayCode.
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Cool example (on self-dual codes).

GAP code (which calls Singular’s finvar.lib package) for
computing the invariants of G:

Example

gap> q := 2;; a := Sqrt(q);; b := 4;; z := E(b);;
gap> gen1 := [[1/a,1/a],[(q-1)/a, -1/a]];;
gap> gen2 := [[1,0],[0,z]];; gen3 := [[z,0],[0,1]];;
gap> G := Group([gen1,gen2,gen3]); Size(G);
Group(
[ [ [ 1/2*E(8)-1/2*E(8)^3, 1/2*E(8)-1/2*E(8)^3 ],

[ 1/2*E(8)-1/2*E(8)^3, -1/2*E(8)+1/2*E(8)^3 ] ],
[ [ 1, 0 ], [ 0, E(4) ] ], [ [ E(4), 0 ], [ 0, 1 ] ] ])

192

David Joyner Coding theory with GUAVA



Linear codes and coding theory functions
Methods for generating codes

Methods for decoding codes

Covering codes
Golay codes
Self-dual codes
Cyclic codes
Evaluation codes

Cool example (on self-dual codes).

GAP code (cont’d):
Example

gap> R:=PolynomialRing(CyclotomicField(8),2);
PolynomialRing(..., [ x_1, x_2 ])
gap> LoadPackage("singular");
true
gap> GeneratorsOfInvariantRing(R,G);
[ x_1^8+14*x_1^4*x_2^4+x_2^8,
1025*x_1^24+10626*x_1^20*x_2^4+735471*x_1^16*x_2^8+
2704156*x_1^12*x_2^12 + 735471*x_1^8*x_2^16+
10626*x_1^4*x_2^20+1025*x_2^24 ]

The GAP interface to Singular was written by Marco Costantini
and Willem A. de Graaf.
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Cool example (on self-dual codes).

The above result implies that any such weight enumerator must
be a polynomial in

x8 + 14x4y4 + y8

and

1025x24 + 10626x20y4 + 735471x16y8 + 2704156x12y12+
735471x8y16 + 10626x4y20 + 1025y24.

(Consistent with a well-known result in coding theory.)
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Cyclic codes.

From the check/generator poly, etc:

GeneratorPolCode,
CheckPolCode

RootsCode, FireCode
ReedSolomonCode

BCHCode, AlternantCode
QRCode, QQRCodeNC
CyclicCodes,
NrCyclicCodes

Figure: Irving Reed,
Gustave Solomon
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Evaluation codes

EvaluationCode

GeneralizedReedSolomonCode

GeneralizedReedMullerCode

ToricCode

GoppaCodeClassical

EvaluationBivariateCode,
EvaluationBivariateCodeNC

OnePointAGCode
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ToricCode example

This code was once best known:
Example

gap> C := ToricCode([ [0,0],[1,1],[1,2],[1,3],[1,4],\
[2,1],[2,2],[2,3],[3,1],[3,2],[4,1]],GF(8));
a linear [49,11,1..39]25..38 toric code over GF(8)

min. dist. = 28. (Diego Ruano searched for other “new and
good” toric codes but found none.)
Toric codes arise from “Riemann-Roch spaces” via the AG code
construction above. Choosing the polytope containing the monomial’s
exponents carefully, the code can be constructed to have a large
automorphism group.
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General methods
generalized Reed-Solomon codes

Decoding methods

Decode(C,r) uses syndrome decoding or nearest-neighbor
except for:

Hamming codes (the usual trick),
GRS codes - see below,
cyclic codes (error-trapping - sometimes), and
BCH codes (Sugiyama decoding).
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generalized Reed-Solomon codes

Decoding methods

The default algorithm used for generalized Reed-Solomon
codes is the interpolation algorithm. Gao’s decoding method for
GRS codes is also available as an option.
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generalized Reed-Solomon codes

Decoding codes obtained from evaluating polynomials at lots of
points “should be easy”.

Rough idea: codewords are values of polynomial and
# values is > deg(polynomials), so the vector overdetermines the
polynomial. If the number of errors is “small” then the polynomial can
still be reconstructed....

McGowan’s (undergrad) thesis has details fo the GUAVA
implementation.
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generalized Reed-Solomon codes

Syntax: Decodeword( C, r ), where C is a GRS code. This
does “interpolation decoding”.

GeneralizedReedSolomonDecoderGao is a version which
uses an algorithm of Gao.

GeneralizedReedSolomonListDecoder( C, r, tau )
implements Sudan’s list-decoding algorithm for “low rate” GRS
codes. It returns the list of all codewords in C which are a
distance of at most τ from r .
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Permutation decoding

Permutation decoding

This method also applies to the decoding of certain AG codes
(see John Little’s (“The Algebraic Structure of Some AG Goppa
Codes”, “Automorphisms and Encoding of AG and Order
Domain Codes”, for example).

Here is the basic idea.

C is a code, v ∈ Fn is a received vector, G = Aut(C) is the
perm. automorphism group.
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Permutation decoding

The algorithm runs through the elements g of G = Aut(C)
checking if the weight of H(g · v) is less than (d − 1)/2. If it is
then the vector g · v is used to decode v : assuming C is in
standard form then c = g−1 ·Gm is the decoded word, where m
is the information digits part of g · v .

If no such g exists then “fail” is returned.

This generalizes “error-trapping” for decoding cyclic codes,
In some cases, only a subset of the elements g of G are
required.

GUAVA functions: PermutationDecodeNC( C, v, G ),
PermutationDecode( C, v )
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Permutation decoding

The algorithm runs through the elements g of G = Aut(C)
checking if the weight of H(g · v) is less than (d − 1)/2. If it is
then the vector g · v is used to decode v : assuming C is in
standard form then c = g−1 ·Gm is the decoded word, where m
is the information digits part of g · v .

If no such g exists then “fail” is returned.

This generalizes “error-trapping” for decoding cyclic codes,
In some cases, only a subset of the elements g of G are
required.

GUAVA functions: PermutationDecodeNC( C, v, G ),
PermutationDecode( C, v )
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SAGE and GUAVA

In SAGE , bad news :

most GUAVA functions are not wrapped,
most Leon functions are not wrapped.

Lots of work to be done.
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SAGE and GUAVA

In SAGE , good news :

GUAVA in included,
there are some new coding-theoretic functions (related to
computing “Duursma zeta functions” of codes).

Figure: Tom Hoeholdt talking to Iwan Duursma at the IMA coding
theory conference, May 2007.
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SAGE and GUAVA

C is an [n, k , d ]q code
C⊥ is an [n, k⊥, d⊥]q code
Motivated by local CFT, Iwan Duursma introduced the zeta
function Z = ZC associated to C:

Z (T ) =
P(T )

(1− T )(1− qT )
, (2)

where P(T ) is a polynomial of degree n + 2− d − d⊥, called
the zeta polynomial.

My “ACA talk” (pdf slides available online) surveyed some of its
properties and gave examples using SAGE ....
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GUAVA 2do list.

In GUAVA, my subjective list of priorities:

1 Leon’s code needs to be rewritten and better utilized,
2 Database of codes (and Hadamard mat„ and ...) should be

“certified” (and much larger ...),
in a more standard, transferable format (such as xml? ...),
“open” (as it is now) but “trademarked”.

3 Constructions to be added (“Construction X/XX/Zinov’ev”).
4 More and better (generalized) self-dual code algorithms.
5 More AG+LDPC codes and their decoding algorithms.
6 Codes over rings.
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The end.

Have fun with GUAVA!
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