The NQL-Package

A Nilpotent Quotient Algorithm for L-presented Groups

Bettina Eick René Hartung*

University of Braunschweig

GAP Package Authors Workshop 2007

L-presentations and L-presented groups

Definition (Bartholdi, 2003)

A (finite) L-presentation (or endomorphic presentation) is an expression of the form

$$
\langle\mathcal{S}| \mathcal{Q}|\Phi| \mathcal{R}\rangle,
$$

where \mathcal{S} is a (finite) alphabet, \mathcal{Q} and \mathcal{R} are (finite) subsets of the free group F on \mathcal{S}, and Φ is a (finite) set of endomorphisms of F.

L-presentations and L-presented groups

Definition (Bartholdi, 2003)

A (finite) L-presentation $\langle\mathcal{S}| \mathcal{Q}|\Phi| \mathcal{R}\rangle$ defines the (finitely) L-presented group $G=F / K$, where

$$
K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}
$$

and Φ^{*} is the monoid generated by Φ.

L-presentations and L-presented groups

Definition

An L-presentation $\langle\mathcal{S}| \mathcal{Q}|\Phi| \mathcal{R}\rangle$ is called invariant, if $K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}$ satisfies $\sigma(K) \subseteq K$ for each $\sigma \in \Phi$.

Each L-presentation of the form $\langle\mathcal{S}| \emptyset|\Phi| \mathcal{R}\rangle$ is invariant.

L-presentations and L-presented groups

Definition

An L-presentation $\langle\mathcal{S}| \mathcal{Q}|\Phi| \mathcal{R}\rangle$ is called invariant, if $K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}$ satisfies $\sigma(K) \subseteq K$ for each $\sigma \in \Phi$.

Each L-presentation of the form $\langle\mathcal{S}| \emptyset|\Phi| \mathcal{R}\rangle$ is invariant.

Remark

Each finite presentation $\langle\mathcal{X} \mid \mathcal{R}\rangle$ translates to an invariant L-presentation of the form $\langle\mathcal{X}| \emptyset|\{\mathrm{id}\}| \mathcal{R}\rangle$.
\Rightarrow (invariant) L-presentations generalize finite presentations

Examples of L-presented groups

Lysënok: The Grigorchuk Group has an L-presentation

$$
\left.\langle a, b, c, d| a^{2}, b^{2}, c^{2}, d^{2}, b c d|\sigma|\left[d, d^{a}\right],\left[d, d^{a c a c a}\right]\right\rangle
$$

where σ is a free group homomorphism induced by

$$
\sigma: F \rightarrow F:\left\{\begin{array}{rll}
a & \mapsto & c^{a} \\
b & \mapsto & d \\
c & \mapsto & b \\
d & \mapsto & c
\end{array} .\right.
$$

Examples of L-presented groups

Further finitely L-presented groups (not finitely presented)

- Gupta-Sidki Group and some generalizations
- Brunner-Sidki-Vieira Group
- Basilica Group
- Fabrykowski-Gupta Group and some generalizations

Examples of L-presented groups

Further finitely L-presented groups (not finitely presented)

- Gupta-Sidki Group and some generalizations
- Brunner-Sidki-Vieira Group
- Basilica Group
- Fabrykowski-Gupta Group and some generalizations

Theorem (Bartholdi, 2007)

Each finitely generated normal subgroup of a finitely presented group is finitely L-presented.

Polycyclic Presentations

Definition (PcpGroups)

A polycyclic presentation is a finite presentation on a_{1}, \ldots, a_{n}, say, with relations of the form

$$
\begin{aligned}
a_{j}^{a_{i}} & =u_{i j}\left(a_{i+1}, \ldots, a_{n}\right) \\
a_{j}^{a_{i}} & =\text { for }^{1} i<j \\
a_{i j}\left(a_{i+1}, \ldots, a_{n}\right) & \text { for } i<j, r_{i}=\infty \\
a_{i}^{r_{i}} & =w_{i i}\left(a_{i+1}, \ldots, a_{n}\right)
\end{aligned} \quad \text { if } r_{i}<\infty
$$

for certain $r_{1}, \ldots, r_{n} \in \mathbb{N} \cup\{\infty\}$.

Polycyclic Presentations

Definition (PcpGroups)

A polycyclic presentation is a finite presentation on a_{1}, \ldots, a_{n}, say, with relations of the form

$$
\begin{aligned}
a_{j}^{a_{i}} & =u_{i j}\left(a_{i+1}, \ldots, a_{n}\right) & & \text { for } i<j \\
a_{j}^{a_{i}^{-}} & =v_{i j}\left(a_{i+1}, \ldots, a_{n}\right) & & \text { for } i<j, r_{i}=\infty \\
a_{i}^{r_{i}} & =w_{i i}\left(a_{i+1}, \ldots, a_{n}\right) & & \text { if } r_{i}<\infty
\end{aligned}
$$

for certain $r_{1}, \ldots, r_{n} \in \mathbb{N} \cup\{\infty\}$.
Polycyclic presentations \longleftrightarrow Polycyclic groups

Polycyclic Presentations

Definition (PcpGroups)

A polycyclic presentation is a finite presentation on a_{1}, \ldots, a_{n}, say, with relations of the form

$$
\begin{aligned}
& a_{j}^{a_{i}}=u_{i j}\left(a_{i+1}, \ldots, a_{n}\right) \\
& a_{j}^{a_{i}}=\text { for } i<j \\
& a_{i j}\left(a_{i+1}, \ldots, a_{n}\right) \\
& \text { for } i<j, r_{i}=\infty \\
& a_{i}^{r_{i}}=w_{i i}\left(a_{i+1}, \ldots, a_{n}\right)
\end{aligned} \quad \text { if } r_{i}<\infty
$$

for certain $r_{1}, \ldots, r_{n} \in \mathbb{N} \cup\{\infty\}$.
Polycyclic presentations \longleftrightarrow Polycyclic groups
Polycyclic presentations allow effective computations.

Nilpotent Quotient Algorithm

Aim: Compute polycyclic presentations for the lower central series quotients $G / \gamma_{c+1}(G)$ for a given c.

Nilpotent Quotient Algorithm

Aim: Compute polycyclic presentations for the lower central series quotients $G / \gamma_{c+1}(G)$ for a given c.
\rightsquigarrow read off the abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G)$ for $i \leq c$

Nilpotent Quotient Algorithm

Aim: Compute polycyclic presentations for the lower central series quotients $G / \gamma_{c+1}(G)$ for a given c.
\rightsquigarrow read off the abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G)$ for $i \leq c$
\rightsquigarrow verify whether G has a maximal nilpotent quotient

Nilpotent Quotient Algorithm

Aim: Compute polycyclic presentations for the lower central series quotients $G / \gamma_{c+1}(G)$ for a given c.
\rightsquigarrow read off the abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G)$ for $i \leq c$
\rightsquigarrow verify whether G has a maximal nilpotent quotient
$\rightsquigarrow \operatorname{read}$ off other properties of $G / \gamma_{c+1}(G)$

The Abelian Quotient (case $c=2$)

Let $G=F / K$ with $K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}$.
(1) Start with $F / F^{\prime} \cong \mathbb{Z}^{m}$ for $m=\operatorname{rk}(F)$

- Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^{m}$
- Let $U=\left\langle\bar{q}, \bar{r} M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \phi^{*}\right\rangle$
- Determine a finite subgroup basis of U
\rightsquigarrow read off a polycyclic presentation for $G / G^{\prime} \cong \mathbb{Z}^{m} / U$.

The Abelian Quotient (case $c=2$)

Let $G=F / K$ with $K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}$.
(1) Start with $F / F^{\prime} \cong \mathbb{Z}^{m}$ for $m=\operatorname{rk}(F)$
(2) Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$

- Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^{m}$
- Let $U=\left\langle\bar{q}, \bar{r} M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \Phi^{*}\right\rangle$
- Determine a finite subgroup basis of U
\rightsquigarrow read off a polycyclic presentation for $G / G^{\prime} \cong \mathbb{Z}^{m} / U$

The Abelian Quotient (case $c=2$)

Let $G=F / K$ with $K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}$.
(1) Start with $F / F^{\prime} \cong \mathbb{Z}^{m}$ for $m=\operatorname{rk}(F)$
(2) Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
(3) Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^{m}$

- Let $U=\left\langle\bar{q}, \bar{r} M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \phi^{*}\right\rangle$
- Determine a finite subgroup basis of U
\rightsquigarrow read off a polycyclic presentation for $G / G^{\prime} \cong \mathbb{Z}^{m} / U$

The Abelian Quotient (case $c=2$)

Let $G=F / K$ with $K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}$.
(1) Start with $F / F^{\prime} \cong \mathbb{Z}^{m}$ for $m=\operatorname{rk}(F)$
(2) Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
(3) Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^{m}$
(1) Let $U=\left\langle\bar{q}, \bar{r} M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \Phi^{*}\right\rangle$

- Determine a finite subgroup basis of U
\rightsquigarrow read off a polycyclic presentation for $G / G^{\prime} \cong \mathbb{Z}^{m} / U$

The Abelian Quotient (case $c=2$)

Let $G=F / K$ with $K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}$.
(1) Start with $F / F^{\prime} \cong \mathbb{Z}^{m}$ for $m=\operatorname{rk}(F)$
(2) Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
(3) Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^{m}$
(1) Let $U=\left\langle\bar{q}, \bar{r} M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \Phi^{*}\right\rangle$

- Determine a finite subgroup basis of U
\rightsquigarrow read off a polycyclic presentation for $G / G^{\prime} \cong \mathbb{Z}^{m} / U$

The Abelian Quotient (case $c=2$)

Let $G=F / K$ with $K=\left\langle\mathcal{Q} \cup \bigcup_{\sigma \in \Phi^{*}} \sigma(\mathcal{R})\right\rangle^{F}$.
(1) Start with $F / F^{\prime} \cong \mathbb{Z}^{m}$ for $m=\operatorname{rk}(F)$
(2) Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
(3) Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^{m}$
(1) Let $U=\left\langle\bar{q}, \bar{r} M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \Phi^{*}\right\rangle$

- Determine a finite subgroup basis of U
\rightsquigarrow read off a polycyclic presentation for $G / G^{\prime} \cong \mathbb{Z}^{m} / U$.

Larger Quotients $(c>2)$

(1) Reduce to invariant L-presentations

Larger Quotients $(c>2)$

(1) Reduce to invariant L-presentations
(2) For invariant L-presentations use induction on c

Larger Quotients ($c>2$)

(1) Reduce to invariant L-presentations
(2) For invariant L-presentations use induction on c
\rightsquigarrow generalize the nilpotent quotient algorithm for finitely presented groups as implemented in the NQ-Package (W. Nickel, 1995)

Larger Quotients ($c>2$)

(1) Reduce to invariant L-presentations
(2) For invariant L-presentations use induction on c
\rightsquigarrow generalize the nilpotent quotient algorithm for finitely presented groups as implemented in the NQ-Package (W. Nickel, 1995)
\rightsquigarrow explicit algorithm is rather technical; it uses ideas similar to those for the abelian quotient

Brunner-Sidki-Vieira Group

Brunner, Sidki, and Vieira, A just-non-solvable torsionfree group defined on the binary tree. 1999.

Brunner-Sidki-Vieira Group

Brunner, Sidki, and Vieira, A just-non-solvable torsionfree group defined on the binary tree. 1999.
A group with invariant L-presentation

$$
\left.G=\langle\lambda, \tau| \emptyset|\sigma|\left[\lambda, \lambda^{\tau}\right],\left[\lambda, \lambda^{\tau^{3}}\right]\right\rangle
$$

where σ is induced by $\tau \mapsto \tau^{2}$ and $\lambda \mapsto \tau^{2} \lambda^{-1} \tau^{2}$.

Brunner-Sidki-Vieira Group

Brunner, Sidki, and Vieira, A just-non-solvable torsionfree group defined on the binary tree. 1999.
A group with invariant L-presentation

$$
\left.G=\langle\lambda, \tau| \emptyset|\sigma|\left[\lambda, \lambda^{\tau}\right],\left[\lambda, \lambda^{\tau^{3}}\right]\right\rangle
$$

where σ is induced by $\tau \mapsto \tau^{2}$ and $\lambda \mapsto \tau^{2} \lambda^{-1} \tau^{2}$.
So far G / G^{\prime} and $G^{\prime} / \gamma_{3}(G)$ are known.
Our algorithm: $\gamma_{i}(G) / \gamma_{i+1}(G)$ for $i \leq 50$.

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G)$
$1, \ldots, 3$	$(0,0),(0),(8)$
$4, \ldots, 6$	$(8),(4,8),(2,8)$
$7, \ldots, 12$	$(2,2,8),(2,2,8),(2,2,4,8),(2,2,4,8),(2,2,2,8),(2,2,2,8)$

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G)$
$1, \ldots, 3$	$(0,0),(0),(8)$
$4, \ldots, 6$	$(8),(4,8),(2,8)$
$7, \ldots, 12$	$\underbrace{(2,2,8),(2,2,8)}, \underbrace{(2,2,4,8),(2,2,4,8)}, \underbrace{(2,2,2,8),(2,2,2,8)}$

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G)$
$1, \ldots, 3$	$(0,0),(0),(8)$
$4, \ldots, 6$	$(8)^{[1]},(4,8)^{[1]},(2,8)^{[1]}$
$7, \ldots, 12$	$(2,2,8)^{[2]},(2,2,4,8)^{[2]},(2,2,2,8)^{[2]}$

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G)$
$1, \ldots, 3$	$(0,0),(0),(8)$
$4, \ldots, 6$	$\left.\left(2^{[[]}, 8\right)^{[[]},\left(2^{[0]}, 4,8\right)^{[1]},\left(2^{[0+1]}, 8\right)^{[1]}\right]$
$7, \ldots, 12$	$\left(2^{[2]}, 8\right)^{[2]},\left(2^{[2]}, 4,8\right)^{[2]},\left(2^{[2+1]}, 8\right)^{[2]}$,

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G)$
$1, \ldots, 3$	$(0,0),(0),(8)$
$4, \ldots, 6$	$\left(2^{[0]}, 8\right)^{[1]},\left(2^{[0]}, 4,8\right)^{[1]},\left(2^{[0+1]}, 8\right)^{[1]}$,
$7, \ldots, 12$	$\left(2^{[2]}, 8\right)^{[2]},\left(2^{[2]}, 4,8\right)^{[2]},\left(2^{[2+1]}, 8\right)^{[2]}$,
$14, \ldots, 24$	$\left(2^{[4]}, 8\right)^{[4]},\left(2^{[4]}, 4,8\right)^{[4]},\left(2^{[4+1]}, 8\right)^{[4]}$,
$25, \ldots, 48$	$\left(2^{[6]}, 8\right)^{[8]},\left(2^{[6]}, 4,8\right)^{[8]},\left(2^{[6+1]}, 8\right)^{[8]}$
$49, \ldots, 50$	$\left(2^{[8]}, 8\right)^{[2]}$

Brunner-Sidki-Vieira Group Basilica Group
Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

Conjecture

The abelian invariants of $\gamma_{i}(G) / \gamma_{i+1}(G), i \geq 4$ are

$$
\begin{aligned}
\left(2^{[2 k]}, 8\right) & \text { if } i \in\left\{3 \cdot 2^{k}+1, \ldots, 4 \cdot 2^{k}\right\} \\
\left(2^{[2 k]}, 4,8\right) & \text { if } i \in\left\{4 \cdot 2^{k}+1, \ldots, 5 \cdot 2^{k}\right\} \\
\left(2^{[2 k+1]}, 8\right) & \text { if } i \in\left\{5 \cdot 2^{k}+1, \ldots, 6 \cdot 2^{k}\right\}
\end{aligned}
$$

for $k \in \mathbb{N}_{0}$.

Basilica Group

Grigorchuk \& Żuk. Spectral properties of a torsion-free weakly branch group defined by a three state automaton. 2002.

Basilica Group

Grigorchuk \& Żuk. Spectral properties of a torsion-free weakly branch group defined by a three state automaton. 2002.

Bartholdi \& Virág, 2005: An invariant L-presentation

$$
\left.\Delta=\langle a, b| \emptyset|\sigma|\left[b, b^{a}\right]\right\rangle
$$

where σ is induced by $a \mapsto b$ and $b \mapsto a^{2}$.

Basilica Group

Grigorchuk \& Żuk. Spectral properties of a torsion-free weakly branch group defined by a three state automaton. 2002.

Bartholdi \& Virág, 2005: An invariant L-presentation

$$
\left.\Delta=\langle a, b| \emptyset|\sigma|\left[b, b^{a}\right]\right\rangle
$$

where σ is induced by $a \mapsto b$ and $b \mapsto a^{2}$.
So far only the abelian quotient Δ / Δ^{\prime} is known.
Our algorithm: $\gamma_{i}(\Delta) / \gamma_{i+1}(\Delta)$ for $i \leq 90$.

Basilica Group

i	Abelian invariants of $\gamma_{i}(\Delta) / \gamma_{i+1}(\Delta)$
$1, \ldots, 6$	$(0,0),(0),(4)^{[2]},(4,4),(2,4)$
$7, \ldots, 12$	$\left(2^{[2]}, 4\right)^{[2]},\left(2^{[3]}, 4\right)^{[1]},\left(2^{[4]}, 4\right)^{[2]},\left(2^{[3]}, 4\right)^{[1]}$
$13, \ldots, 25$	$\left(2^{[4]}, 4\right)^{[4]},\left(2^{[5]}, 4\right)^{[2]},\left(2^{[6]}, 4\right)^{[4]},\left(2^{[5]}, 4\right)^{[2]}$
$26, \ldots, 48$	$\left(2^{[6]}, 4\right)^{[8]},\left(2^{[7]}, 4\right)^{[4]},\left(2^{[8]}, 4\right)^{[8]},\left(2^{[7]}, 4\right)^{[4]}$
$49, \ldots, 90$	$\left(2^{[8]}, 4\right)^{[16]},\left(2^{[9]}, 4\right)^{[8]},\left(2^{[10]}, 4\right)^{[16]},\left(2^{[9]}, 4\right)^{[2]}$

Basilica Group

Conjecture

The abelian invariants of $\gamma_{i}(\Delta) / \gamma_{i+1}(\Delta), i \geq 7$ are

$$
\begin{array}{ll}
\left(2^{[2 k+2]}, 4\right) & \text { if } i \in\left\{6 \cdot 2^{k}+1, \ldots, 8 \cdot 2^{k}\right\} \\
\left(2^{[2 k+3]}, 4\right) & \text { if } i \in\left\{8 \cdot 2^{k}+1, \ldots, 9 \cdot 2^{k}\right\} \\
\left(2^{[2 k+4]}, 4\right) & \text { if } i \in\left\{9 \cdot 2^{k}+1, \ldots, 11 \cdot 2^{k}\right\} \\
\left(2^{[2 k+3]}, 4\right) & \text { if } i \in\left\{11 \cdot 2^{k}+1, \ldots, 12 \cdot 2^{k}\right\}
\end{array}
$$

for $k \in \mathbb{N}_{0}$.

Brunner-Sidki-Vieira Group Basilica Group
Fabrykowski-Gupta Groups

Fabrykowski-Gupta Groups

Fabrykowski \& Gupta. On groups with sub-exponential growth functions. 1985.

Fabrykowski-Gupta Groups

Fabrykowski \& Gupta. On groups with sub-exponential growth functions. 1985.
Generalization (Bartholdi, 2007): For $n \geq 3$ let

$$
\left.\Gamma_{n}=\langle\alpha, \rho| \emptyset|\varphi| \mathcal{R}\right\rangle
$$

with $\sigma_{i}=\rho^{\alpha^{i}}$ for $1 \leq i \leq n$ and

$$
\mathcal{R}=\left\{\alpha^{n},\left[\sigma_{i}^{\sigma_{i-1}^{l}}, \sigma_{j}^{\sigma_{j-1}^{m}}\right], \sigma_{i}^{-\sigma_{i-1}^{l+1}} \sigma_{i}^{\sigma_{i-1}^{l} \sigma_{i-1}^{\sigma_{i-2}^{m}}} \begin{array}{c}
1 \leq i, j \leq n, \\
2 \leq|i-j| \leq n-2, \\
0 \leq l, m \leq n-1
\end{array}\right\}
$$

and φ is induced by $\alpha \mapsto \rho^{\alpha^{-1}}$ and $\rho \mapsto \rho$.

Fabrykowski-Gupta Groups (n prime)

If n is prime then $\gamma_{i}\left(\Gamma_{n}\right) / \gamma_{i+1}\left(\Gamma_{n}\right)$ are n-elementary abelian groups with n-ranks

- $\Gamma_{3}: \quad 2,1,2,1,2^{[3]}, 1^{[3]}, 2^{[9]}, 1^{[9]}, 2^{[27]}, 1^{[27]}$
- $\Gamma_{5}: \quad 2,1^{[3]}, 2,1^{[13]}, 2^{[5]}, 1^{[65]}, 2^{[8]}$
- $\Gamma_{7}: 2,1^{[5]}, 2,1^{[33]}, 2^{[7]}, 1^{[27]}$
- $\Gamma_{11}: 2,1^{[9]}, 2,1^{[54]}$

Fabrykowski-Gupta Groups (n prime)

If n is prime then $\gamma_{i}\left(\Gamma_{n}\right) / \gamma_{i+1}\left(\Gamma_{n}\right)$ are n-elementary abelian groups with n-ranks

- $\Gamma_{3}: \quad 2,1,2,1,2^{[3]}, 1^{[3]}, 2^{[9]}, 1^{[9]}, 2^{[27]}, 1^{[27]}$
- $\Gamma_{5}: \quad 2,1^{[3]}, 2,1^{[13]}, 2^{[5]}, 1^{[65]}, 2^{[8]}$
- $\Gamma_{7}: 2,1^{[5]}, 2,1^{[33]}, 2^{[7]}, 1^{[27]}$
- $\Gamma_{11}: 2,1^{[9]}, 2,1^{[54]}$

Conjecture

If n is an odd prime, then Γ_{n} is a group of width 2.

Fabrykowski-Gupta Groups (n prime-power)

If $n=p^{k}$ then $\gamma_{i}\left(\Gamma_{n}\right) / \gamma_{i+1}\left(\Gamma_{n}\right)$ are p-elementary abelian, except for some initial entries:
$\Gamma_{4}:(4,4),(4), 2^{[4]}, 3^{[3]}, 2^{[13]}, 3^{[12]}, 2^{[52]}, 3^{[38]}$
$\Gamma_{8}:(8,8),(8),(4)^{[4]}, 2,1,2^{[2]}, 3,2,3^{[2]}, 4,3^{[8]}, 2^{[23]}, 3^{[5]}, 2^{[1]}$
$\left.\Gamma_{9}:(9,9),(9)\right)^{[2]}, 1^{[5]}, 2^{[6]}, 3,2^{[17]}, 1^{[38]}, 2^{[36]}$

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Fabrykowski-Gupta Groups (n composite)

If $n \in\{6,10,12,14,15,18,20,21\}$ then the groups Γ_{n} have a maximal nilpotent quotient.

Conjecture
If n is a composite, then Γ_{n} has a maximal nilpotent quotient.

Further experiments with

- Gupta-Sidki Group and some generalizations
- Grigorchuk Super Group from

Bartholdi \& Grigorchuk. On parabolic subgroups of some fractal groups. 2002.

- Baumslag. A finitely generated, infinitely related group with trivial multiplicator. 1971.

The algorithm is implemented in the GAP4 package NQL and described explicitly in
Eick, Hartung, Bartholdi. A nilpotent quotient algorithm for L-presented groups. 2007.

