The NQL-Package A Nilpotent Quotient Algorithm for *L*-presented Groups

Bettina Eick René Hartung*

University of Braunschweig

GAP Package Authors Workshop 2007

Bettina Eick, René Hartung* Nilpotent Quotients of L-presented Groups

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

L-presentations and L-presented groups

Definition (Bartholdi, 2003)

A (finite) L-presentation (or endomorphic presentation) is an expression of the form

 $\langle \mathcal{S} \mid \mathcal{Q} \mid \Phi \mid \mathcal{R} \rangle,$

where S is a (finite) alphabet, Q and R are (finite) subsets of the free group F on S, and Φ is a (finite) set of endomorphisms of F.

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

L-presentations and L-presented groups

Definition (Bartholdi, 2003)

A (finite) *L*-presentation $\langle S | Q | \Phi | R \rangle$ defines the *(finitely) L-presented group* G = F/K, where

$$K = \left\langle \mathcal{Q} \cup \bigcup_{\sigma \in \Phi^*} \sigma(\mathcal{R}) \right\rangle^F$$

・ロト ・ 同ト ・ ヨト ・ ヨト

and Φ^* is the monoid generated by Φ .

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

L-presentations and L-presented groups

Definition

An *L*-presentation $\langle S | Q | \Phi | R \rangle$ is called *invariant*, if $K = \langle Q \cup \bigcup_{\sigma \in \Phi^*} \sigma(R) \rangle^F$ satisfies $\sigma(K) \subseteq K$ for each $\sigma \in \Phi$.

Each *L*-presentation of the form $\langle S \mid \emptyset \mid \Phi \mid \mathcal{R} \rangle$ is invariant.

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

L-presentations and L-presented groups

Definition

An *L*-presentation $\langle \mathcal{S} | \mathcal{Q} | \Phi | \mathcal{R} \rangle$ is called *invariant*, if $K = \langle \mathcal{Q} \cup \bigcup_{\sigma \in \Phi^*} \sigma(\mathcal{R}) \rangle^F$ satisfies $\sigma(K) \subseteq K$ for each $\sigma \in \Phi$.

Each *L*-presentation of the form $\langle S \mid \emptyset \mid \Phi \mid \mathcal{R} \rangle$ is invariant.

Remark

Each finite presentation $\langle \mathcal{X} | \mathcal{R} \rangle$ translates to an invariant *L*-presentation of the form $\langle \mathcal{X} | \emptyset | \{ \mathsf{id} \} | \mathcal{R} \rangle$.

 \Rightarrow (invariant) *L*-presentations generalize finite presentations

Introduction L-pre The Algorithm Applications Polyce

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

Examples of L-presented groups

Lysënok: The Grigorchuk Group has an L-presentation

$$\left\langle a, b, c, d \mid a^2, b^2, c^2, d^2, bcd \mid \sigma \mid [d, d^a], [d, d^{acaca}] \right\rangle$$

where σ is a free group homomorphism induced by

$$\sigma \colon F \to F \coloneqq \begin{cases} a \mapsto c^{a} \\ b \mapsto d \\ c \mapsto b \\ d \mapsto c \end{cases} .$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Bettina Eick, René Hartung^{*} Nilpotent Quotients of *L*-presented Groups

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

Examples of L-presented groups

Further finitely L-presented groups (not finitely presented)

- Gupta-Sidki Group and some generalizations
- Brunner-Sidki-Vieira Group
- Basilica Group
- Fabrykowski-Gupta Group and some generalizations

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

Examples of L-presented groups

Further finitely L-presented groups (not finitely presented)

- Gupta-Sidki Group and some generalizations
- Brunner-Sidki-Vieira Group
- Basilica Group
- Fabrykowski-Gupta Group and some generalizations

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (Bartholdi, 2007)

Each finitely generated normal subgroup of a finitely presented group is finitely L-presented.

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

Polycyclic Presentations

Definition (PcpGroups)

A *polycyclic presentation* is a finite presentation on a_1, \ldots, a_n , say, with relations of the form

$$\begin{array}{rcl} a_{j}^{a_{i}} &=& u_{ij}(a_{i+1}, \dots, a_{n}) & \text{ for } i < j \\ a_{j}^{a_{i}^{-1}} &=& v_{ij}(a_{i+1}, \dots, a_{n}) & \text{ for } i < j, r_{i} = \infty \\ a_{i}^{r_{i}} &=& w_{ii}(a_{i+1}, \dots, a_{n}) & \text{ if } r_{i} < \infty \end{array}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

for certain $r_1, \ldots, r_n \in \mathbb{N} \cup \{\infty\}$.

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

Polycyclic Presentations

Definition (PcpGroups)

A polycyclic presentation is a finite presentation on a_1, \ldots, a_n , say, with relations of the form

$$\begin{array}{rcl}
a_{j}^{a_{i}} &=& u_{ij}(a_{i+1}, \dots, a_{n}) & \text{ for } i < j \\
a_{j}^{a_{i}^{-1}} &=& v_{ij}(a_{i+1}, \dots, a_{n}) & \text{ for } i < j, r_{i} = \infty \\
a_{i}^{r_{i}} &=& w_{ii}(a_{i+1}, \dots, a_{n}) & \text{ if } r_{i} < \infty
\end{array}$$

《曰》 《聞》 《臣》 《臣》

for certain $r_1, \ldots, r_n \in \mathbb{N} \cup \{\infty\}$.

Polycyclic presentations \longleftrightarrow Polycyclic groups

L-presented groups Examples of *L*-presented groups Polycyclic Presentations

Polycyclic Presentations

Definition (PcpGroups)

A polycyclic presentation is a finite presentation on a_1, \ldots, a_n , say, with relations of the form

$$\begin{array}{rcl} a_{j}^{a_{i}} &=& u_{ij}(a_{i+1}, \dots, a_{n}) & \text{ for } i < j \\ a_{j}^{a_{i}^{-1}} &=& v_{ij}(a_{i+1}, \dots, a_{n}) & \text{ for } i < j, r_{i} = \infty \\ a_{i}^{r_{i}} &=& w_{ii}(a_{i+1}, \dots, a_{n}) & \text{ if } r_{i} < \infty \end{array}$$

for certain $r_1, \ldots, r_n \in \mathbb{N} \cup \{\infty\}$.

Polycyclic presentations \longleftrightarrow Polycyclic groups Polycyclic presentations allow effective computations.

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

Nilpotent Quotient Algorithm

Aim: Compute polycyclic presentations for the lower central series quotients $G/\gamma_{c+1}(G)$ for a given c.

Bettina Eick, René Hartung^{*} Nilpotent Quotients of L-presented Groups

・ 同 ト ・ ヨ ト ・ ヨ ト

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

Nilpotent Quotient Algorithm

- Aim: Compute polycyclic presentations for the lower central series quotients $G/\gamma_{c+1}(G)$ for a given c.
 - ·→ read off the abelian invariants of $\gamma_i(G)/\gamma_{i+1}(G)$ for $i \leq c$

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

Nilpotent Quotient Algorithm

- Aim: Compute polycyclic presentations for the lower central series quotients $G/\gamma_{c+1}(G)$ for a given c.
 - ·→ read off the abelian invariants of $\gamma_i(G)/\gamma_{i+1}(G)$ for $i \leq c$
 - \rightsquigarrow verify whether G has a maximal nilpotent quotient

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

Nilpotent Quotient Algorithm

- Aim: Compute polycyclic presentations for the lower central series quotients $G/\gamma_{c+1}(G)$ for a given c.
 - ·→ read off the abelian invariants of $\gamma_i(G)/\gamma_{i+1}(G)$ for $i \leq c$
 - \rightsquigarrow verify whether G has a maximal nilpotent quotient \rightsquigarrow read off other properties of $G/\gamma_{c+1}(G)$

(日) (四) (日) (日)

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

The Abelian Quotient (case c = 2)

Let G = F/K with $K = \langle \mathcal{Q} \cup \bigcup_{\sigma \in \Phi^*} \sigma(\mathcal{R}) \rangle^F$.

- Start with $F/F' \cong \mathbb{Z}^m$ for $m = \mathsf{rk}(F)$
- 2) Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
- (a) Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\overline{g} \in \mathbb{Z}^m$
- Let $U = \langle \bar{q}, \bar{r}M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \Phi^* \rangle$
- **(a)** Determine a finite subgroup basis of U

 \rightsquigarrow read off a polycyclic presentation for $G/G' \cong \mathbb{Z}^m/U$.

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

The Abelian Quotient (case c = 2)

Let G = F/K with $K = \langle \mathcal{Q} \cup \bigcup_{\sigma \in \Phi^*} \sigma(\mathcal{R}) \rangle^F$.

- Start with $F/F' \cong \mathbb{Z}^m$ for $m = \mathsf{rk}(F)$
- **2** Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
- 3) Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\overline{g} \in \mathbb{Z}^m$
- **(a)** Determine a finite subgroup basis of U

 \rightsquigarrow read off a polycyclic presentation for $G/G' \cong \mathbb{Z}^m/U$.

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

The Abelian Quotient (case c = 2)

Let G = F/K with $K = \langle \mathcal{Q} \cup \bigcup_{\sigma \in \Phi^*} \sigma(\mathcal{R}) \rangle^F$.

- Start with $F/F' \cong \mathbb{Z}^m$ for $m = \mathsf{rk}(F)$
- **2** Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
- **③** Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^m$
- **(a)** Determine a finite subgroup basis of U

 \rightsquigarrow read off a polycyclic presentation for $G/G' \cong \mathbb{Z}^m/U$.

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

The Abelian Quotient (case c = 2)

Let
$$G = F/K$$
 with $K = \langle \mathcal{Q} \cup \bigcup_{\sigma \in \Phi^*} \sigma(\mathcal{R}) \rangle^F$.

- Start with $F/F' \cong \mathbb{Z}^m$ for $m = \mathsf{rk}(F)$
- **2** Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
- **③** Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^m$
- Let $U = \langle \bar{q}, \bar{r}M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \Phi^* \rangle$

Determine a finite subgroup basis of U

 \rightsquigarrow read off a polycyclic presentation for $G/G' \cong \mathbb{Z}^m/U$.

・ロト ・(型ト ・) ヨト ・) ヨト

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

The Abelian Quotient (case c = 2)

Let
$$G = F/K$$
 with $K = \langle \mathcal{Q} \cup \bigcup_{\sigma \in \Phi^*} \sigma(\mathcal{R}) \rangle^F$.

- Start with $F/F' \cong \mathbb{Z}^m$ for $m = \mathsf{rk}(F)$
- **2** Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
- **③** Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^m$
- Let $U = \langle \bar{q}, \bar{r}M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \Phi^* \rangle$
- **③** Determine a finite subgroup basis of U

 \rightsquigarrow read off a polycyclic presentation for $G/G' \cong \mathbb{Z}^m/U$.

・ロト ・(型ト ・) ヨト ・) ヨト

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

The Abelian Quotient (case c = 2)

Let
$$G = F/K$$
 with $K = \langle \mathcal{Q} \cup \bigcup_{\sigma \in \Phi^*} \sigma(\mathcal{R}) \rangle^F$.

- Start with $F/F' \cong \mathbb{Z}^m$ for $m = \mathsf{rk}(F)$
- **2** Translate $\sigma \in \Phi$ to $M_{\sigma} \in \mathbb{Z}^{m \times m}$
- **③** Translate $g \in \mathcal{Q} \cup \mathcal{R}$ to $\bar{g} \in \mathbb{Z}^m$
- Let $U = \langle \bar{q}, \bar{r}M_{\sigma} \mid q \in \mathcal{Q}, r \in \mathcal{R}, \sigma \in \Phi^* \rangle$
- **5** Determine a finite subgroup basis of U

 \rightsquigarrow read off a polycyclic presentation for $G/G' \cong \mathbb{Z}^m/U$.

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

Larger Quotients (c > 2)

Reduce to invariant L-presentations

Bettina Eick, René Hartung* Nilpotent Quotients of L-presented Groups

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

Larger Quotients (c > 2)

- Reduce to invariant *L*-presentations
- **②** For invariant *L*-presentations use induction on c

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

Larger Quotients (c > 2)

- Reduce to invariant *L*-presentations
- **2** For invariant *L*-presentations use induction on c
 - → generalize the nilpotent quotient algorithm for finitely presented groups as implemented in the NQ-Package (W. Nickel, 1995)

Nilpotent Quotient Algorithm The Abelian Quotient (case c = 2) Larger Quotients (c > 2)

Larger Quotients (c > 2)

- Reduce to invariant *L*-presentations
- **2** For invariant *L*-presentations use induction on c
 - → generalize the nilpotent quotient algorithm for finitely presented groups as implemented in the NQ-Package (W. Nickel, 1995)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \rightsquigarrow explicit algorithm is rather technical; it uses ideas similar to those for the abelian quotient

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

Brunner, Sidki, and Vieira, A just-non-solvable torsionfree group defined on the binary tree. 1999.

- - I I - I

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

Brunner, Sidki, and Vieira, A just-non-solvable torsionfree group defined on the binary tree. 1999.

A group with invariant L-presentation

$$G = \langle \lambda, \tau \mid \emptyset \mid \sigma \mid [\lambda, \lambda^{\tau}], [\lambda, \lambda^{\tau^3}] \rangle$$

where σ is induced by $\tau \mapsto \tau^2$ and $\lambda \mapsto \tau^2 \lambda^{-1} \tau^2$.

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

Brunner, Sidki, and Vieira, A just-non-solvable torsionfree group defined on the binary tree. 1999.

A group with invariant L-presentation

$$G = \langle \lambda, \tau \mid \emptyset \mid \sigma \mid [\lambda, \lambda^{\tau}], [\lambda, \lambda^{\tau^3}] \rangle$$

where σ is induced by $\tau \mapsto \tau^2$ and $\lambda \mapsto \tau^2 \lambda^{-1} \tau^2$.

So far G/G' and $G'/\gamma_3(G)$ are known.

Our algorithm: $\gamma_i(G)/\gamma_{i+1}(G)$ for $i \leq 50$.

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_i(G)/\gamma_{i+1}(G)$
$1,\ldots,3$	(0,0),(0),(8)
$4, \ldots, 6$	(8),(4,8),(2,8)
$7, \ldots, 12$	(2,2,8), (2,2,8), (2,2,4,8), (2,2,4,8), (2,2,2,8), (2,2,2,8)

< E

э.

< 一型

Bettina Eick, René Hartung^{*} Nilpotent Quotients of *L*-presented Groups

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_i(G)/\gamma_{i+1}(G)$
$1,\ldots,3$	(0,0),(0),(8)
$4, \ldots, 6$	(8),(4,8),(2,8)
$7, \dots, 12$	$(\underbrace{(2,2,8),(2,2,8)},(\underbrace{(2,2,4,8),(2,2,4,8)},(\underbrace{(2,2,2,8),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,8),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,8)},(2,2,2,8)},(\underbrace{(2,2,2,3),(2,2,2,8)},(2,2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2)},(2,2,2,2)},(2$
	· · · ·

► 4 Ξ ►

-

Bettina Eick, René Hartung^{*} Nilpotent Quotients of *L*-presented Groups

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

Bettina Eick, René Hartung^{*} Nilpotent Quotients of L-presented Groups

.

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_i(G)/\gamma_{i+1}(G)$
$1,\ldots,3$	(0,0),(0),(8)
$4,\ldots,6$	$(2^{[0]}, 8)^{[1]}, (2^{[0]}, 4, 8)^{[1]}, (2^{[0+1]}, 8)^{[1]},$
$7,\ldots,\!12$	$(2^{[2]}, 8)^{[2]}, (2^{[2]}, 4, 8)^{[2]}, (2^{[2+1]}, 8)^{[2]},$

Bettina Eick, René Hartung* Nilpotent Quotients of L-presented Groups

< 一型

- - E

-

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

i	Abelian invariants of $\gamma_i(G)/\gamma_{i+1}(G)$
$1, \dots, 3$	(0,0),(0),(8)
$4,\ldots,6$	$(2^{[0]}, 8)^{[1]}, (2^{[0]}, 4, 8)^{[1]}, (2^{[0+1]}, 8)^{[1]},$
$7,\ldots,\!\!12$	$(2^{[2]}, 8)^{[2]}, (2^{[2]}, 4, 8)^{[2]}, (2^{[2+1]}, 8)^{[2]},$
$14, \dots, 24$	$(2^{[4]}, 8)^{[4]}, (2^{[4]}, 4, 8)^{[4]}, (2^{[4+1]}, 8)^{[4]},$
$25, \dots, 48$	$(2^{[6]}, 8)^{[8]}, (2^{[6]}, 4, 8)^{[8]}, (2^{[6+1]}, 8)^{[8]}$
49,, 50	$(2^{[8]}, 8)^{[2]}$

Bettina Eick, René Hartung* Nilpotent Quotients of L-presented Groups

э.

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Brunner-Sidki-Vieira Group

Conjecture

The abelian invariants of $\gamma_i(G)/\gamma_{i+1}(G)$, $i \geq 4$ are

for $k \in \mathbb{N}_0$.

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Basilica Group

Grigorchuk & Żuk. Spectral properties of a torsion-free weakly branch group defined by a three state automaton. 2002.

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Basilica Group

Grigorchuk & Żuk. Spectral properties of a torsion-free weakly branch group defined by a three state automaton. 2002.

Bartholdi & Virág, 2005: An invariant L-presentation

$$\Delta = \langle a, b \mid \emptyset \mid \sigma \mid [b, b^a] \rangle$$

where σ is induced by $a \mapsto b$ and $b \mapsto a^2$.

Basilica Group

Grigorchuk & Żuk. Spectral properties of a torsion-free weakly branch group defined by a three state automaton. 2002.

Bartholdi & Virág, 2005: An invariant L-presentation

$$\Delta = \langle a, b \mid \emptyset \mid \sigma \mid [b, b^a] \rangle$$

where σ is induced by $a \mapsto b$ and $b \mapsto a^2$.

So far only the abelian quotient Δ/Δ' is known.

Our algorithm: $\gamma_i(\Delta)/\gamma_{i+1}(\Delta)$ for $i \leq 90$.

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Basilica Group

_

i	Abelian invariants of $\gamma_i(\Delta)/\gamma_{i+1}(\Delta)$
1, , 6	$(0,0),(0),(4)^{[2]},(4,4),(2,4)$
$7,\ldots,12$	$(2^{[2]}, 4)^{[2]}, (2^{[3]}, 4)^{[1]}, (2^{[4]}, 4)^{[2]}, (2^{[3]}, 4)^{[1]}$
13, , 25	$(2^{[4]}, 4)^{[4]}, (2^{[5]}, 4)^{[2]}, (2^{[6]}, 4)^{[4]}, (2^{[5]}, 4)^{[2]}$
26, , 48	$(2^{[6]}, 4)^{[8]}, (2^{[7]}, 4)^{[4]}, (2^{[8]}, 4)^{[8]}, (2^{[7]}, 4)^{[4]}$
49, , 90	$(2^{[8]}, 4)^{[16]}, (2^{[9]}, 4)^{[8]}, (2^{[10]}, 4)^{[16]}, (2^{[9]}, 4)^{[2]}$

Bettina Eick, René Hartung* Nilpotent Quotients of L-presented Groups

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Basilica Group

Conjecture

The abelian invariants of $\gamma_i(\Delta)/\gamma_{i+1}(\Delta)$, $i \geq 7$ are

$$\begin{array}{ll} (2^{[2k+2]},4) & if \ i \in \{6 \cdot 2^k + 1, \dots, 8 \cdot 2^k\} \\ (2^{[2k+3]},4) & if \ i \in \{8 \cdot 2^k + 1, \dots, 9 \cdot 2^k\} \\ (2^{[2k+4]},4) & if \ i \in \{9 \cdot 2^k + 1, \dots, 11 \cdot 2^k\} \\ (2^{[2k+3]},4) & if \ i \in \{11 \cdot 2^k + 1, \dots, 12 \cdot 2^k\} \end{array}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

for $k \in \mathbb{N}_0$.

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Fabrykowski-Gupta Groups

Fabrykowski & Gupta. On groups with sub-exponential growth functions. 1985.

< 4 1 ≥

A B K A B K

Fabrykowski-Gupta Groups

Fabrykowski & Gupta. On groups with sub-exponential growth functions. 1985.

Generalization (Bartholdi, 2007): For $n \geq \mathbf{3}$ let

 $\Gamma_n = \langle \alpha, \rho \mid \emptyset \mid \varphi \mid \mathcal{R} \rangle,$

with $\sigma_i = \rho^{\alpha^i}$ for $1 \le i \le n$ and

$$\mathcal{R} = \left\{ \alpha^n, \left[\sigma_i^{\sigma_{i-1}^l}, \sigma_j^{\sigma_{j-1}^m} \right], \sigma_i^{-\sigma_{i-1}^{l+1}} \sigma_i^{\sigma_{i-1}^l \sigma_{i-1}^m} \left| \begin{array}{c} 1 \le i, j \le n, \\ 2 \le |i-j| \le n-2, \\ 0 \le l, m \le n-1 \end{array} \right. \right\}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

and φ is induced by $\alpha \mapsto \rho^{\alpha^{-1}}$ and $\rho \mapsto \rho$.

Introduction Brunner-S The Algorithm Basilica G Applications Fabrykows

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Fabrykowski-Gupta Groups (n prime)

If n is prime then $\gamma_i(\Gamma_n)/\gamma_{i+1}(\Gamma_n)$ are n-elementary abelian groups with n-ranks

- Γ_3 : 2, 1, 2, 1, 2^[3], 1^[3], 2^[9], 1^[9], 2^[27], 1^[27]
- Γ_5 : 2, 1^[3], 2, 1^[13], 2^[5], 1^[65], 2^[8]
- Γ_7 : 2, 1^[5], 2, 1^[33], 2^[7], 1^[27]
- Γ_{11} : 2, 1^[9], 2, 1^[54]

Introduction Brunner The Algorithm Basilica Applications Fabrykov

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Fabrykowski-Gupta Groups (n prime)

If n is prime then $\gamma_i(\Gamma_n)/\gamma_{i+1}(\Gamma_n)$ are n-elementary abelian groups with n-ranks

- Γ_3 : 2, 1, 2, 1, 2^[3], 1^[3], 2^[9], 1^[9], 2^[27], 1^[27]
- Γ₅: 2, 1^[3], 2, 1^[13], 2^[5], 1^[65], 2^[8]
- Γ_7 : 2, 1^[5], 2, 1^[33], 2^[7], 1^[27]
- Γ_{11} : 2, 1^[9], 2, 1^[54]

Conjecture

If n is an odd prime, then Γ_n is a group of width 2.

《曰》 《聞》 《臣》 《臣》 三臣

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Fabrykowski-Gupta Groups (n prime-power)

If $n = p^k$ then $\gamma_i(\Gamma_n)/\gamma_{i+1}(\Gamma_n)$ are *p*-elementary abelian, except for some initial entries:

$$\begin{split} & \Gamma_4: (4,4), (4), 2^{[4]}, 3^{[3]}, 2^{[13]}, 3^{[12]}, 2^{[52]}, 3^{[38]} \\ & \Gamma_8: (8,8), (8), (4)^{[4]}, 2, 1, 2^{[2]}, 3, 2, 3^{[2]}, 4, 3^{[8]}, 2^{[23]}, 3^{[5]}, 2^{[1]} \\ & \Gamma_9: (9,9), (9)^{[2]}, 1^{[5]}, 2^{[6]}, 3, 2^{[17]}, 1^{[38]}, 2^{[36]} \end{split}$$

・ロト ・伺 ト ・ヨト ・ヨト

Brunner-Sidki-Vieira Group Basilica Group Fabrykowski-Gupta Groups

Fabrykowski-Gupta Groups (n composite)

If $n \in \{6, 10, 12, 14, 15, 18, 20, 21\}$ then the groups Γ_n have a maximal nilpotent quotient.

Conjecture

If n is a composite, then Γ_n has a maximal nilpotent quotient.

Introduction	
The Algorithm	
Applications	Fabrykowski-Gupta Groups

Further experiments with

- Gupta-Sidki Group and some generalizations
- Grigorchuk Super Group from Bartholdi & Grigorchuk. On parabolic subgroups of some fractal groups. 2002.
- Baumslag. A finitely generated, infinitely related group with trivial multiplicator. 1971.

The algorithm is implemented in the GAP4 package NQL and described explicitly in

Eick, Hartung, Bartholdi. A nilpotent quotient algorithm for L-presented groups. 2007.