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k = integral domain
A = k[x1,...,xa]/] an associative algebra

A sequence of A-module homomorphisms
d d: d d
SRS RS RS Ry

is said to be a free A-resolution of M if
» (Exactness) ker d, = image d, 41 for all n > 1,
» (Freeness) R, is a free A-module for all n > 0,

» (Augmentation) the cokernel of dj is isomorphic to the
module M.



For A-modules M, N define

Ext?(M, N) = ker(Homa(Rn, N) — Homa(Rp+1, N))

image(Homa(Rn—1, N) — Homa(Rp, N))



For A-modules M, N define

Ext?(M, N) = ker(Homa(Rn, N) — Homa(Rp+1, N))

image(Homa(Rn—1, N) — Homa(Rp, N))

and

ker(R,, XA N— R,_1 XA N)
image(Rp+1 ®a N — R, @4 N)’

Tor (M, N) =



There are many reasons for wanting to calculate these functors.
My motivation is not:

A system is controllable if one can move from one system
trajectory xp to another trajectory x; without violating the system
law. Some systems are more controllable than others.



There are many reasons for wanting to calculate these functors.
My motivation is not:

A system is controllable if one can move from one system
trajectory xp to another trajectory x; without violating the system
law. Some systems are more controllable than others.

For an A-module M (arising from a system) set N = Homa(M, A).
Definition

The controllability degree of M is the first natural number n > 0
such that Extj(N,A) # 0 and Exty(N,A) =0 for 0 < i < n.



The are a number of packages for computing these functors.

CoCO0A, MACAULAY, and SINGULAR contain a range of Grobner
basis methods for computing the functors Tor/(M, N) and
Ext3(M, N) in the case where k is a field and the ring A is
commutative.



The are a number of packages for computing these functors.

CoCO0A, MACAULAY, and SINGULAR contain a range of Grobner
basis methods for computing the functors Tor/(M, N) and
Ext3(M, N) in the case where k is a field and the ring A is
commutative.

The PLURAL extension to Singular handles certain non-
commutative rings A.



For the cohomology of a group G one takes the ring of integers
k = Z, the module M = Z with trivial G-action, the group ring
A =7G, and sets

H"(G,N) = Extic(Z,N), Hn(G,N) = Tor’¢(z, N).



For the cohomology of a group G one takes the ring of integers
k = Z, the module M = Z with trivial G-action, the group ring
A =7G, and sets

H"(G,N) = Extic(Z,N), Hn(G,N) = Tor’¢(z, N).
GAP and MAGMA handle n =1, 2.

MAGMA handles n > 2 for G a small p-group (where it suffices to
set k = GF(p)).



For the cohomology of a group G one takes the ring of integers
k = Z, the module M = Z with trivial G-action, the group ring
A =7G, and sets

H"(G,N) = Extic(Z,N), Hn(G,N) = Tor’¢(z, N).

The computation of cohomology involves two expensive but
independent tasks:

1. the computation of a free resolution;

2. the computation of the homology of a chain complex.

This talk focuses on a method for task 1.



2. EXAMPLE COMPUTATIONS



Theorem

(i) The group Kz = ker(SL2(Z33) — SLa(Z3)) has third integral
homology group of exponent 27.

(ii) In dimensions n # 3,1 < n it has integral homology
Hn(K3,Z) of exponent at most 9.

Proof.

(i) W. Browder and J. Pakianathan, “Cohomology of uniformly
powerful p-groups”, Trans. Amer. Math. Soc. 352 (2000), no. 6,
2659-2688.

(ii) J. Pakianathan, “Exponents and the cohomology of finite
groups”, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1893-1897.



Theorem

(i) The group Kz = ker(SL2(Z33) — SLa(Z3)) has third integral
homology group of exponent 27.

(ii) In dimensions n # 3, 1 < n < 6 it has integral homology
Hn(K3,Z) of exponent at most 9.



Automated Proof.

gap> K3:=MaximalSubgroups (SylowSubgroup (
SL(2,Integers mod 3°3),3))[2];;
gap> K3:=Image (IsomorphismPcGroup(K3));;
gap> Display(List([1..4],n->GroupHomology(K3,n)));
(c 3 3, 31,

[ 3, 3, 31,

[ 3, 3, 3, 3, 3, 3, 271,

[ 3, 3, 3, 3, 3, 3, 3, 31,

[ 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 9, 9, 91,

[ 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 9, 9, 9, 9, 911



Theorem

The Mathieu group M3 has trivial integral homology
H,(Ma3,Z) = 0 in dimensions n = 1,2, 3.

Proof.

R.J. Milgram, “The cohomology of the Mathieu group M»3",J.
Group Theory 3 (2000), no. 1, 7-26.



Theorem
The Mathieu group M3 has trivial integral homology
Hn,(Ma3,Z) = 0 in dimensions n = 1,2, 3.

Automated Proof.

gap> GroupHomology(MathieuGroup(23),1);
L]
gap> GroupHomology(MathieuGroup(23),2);
L]
gap> GroupHomology(MathieuGroup(23),3);
L]



Theorem

The mod 2 cohomology H"(M1,7Z5) of the Mathieu group My is
a vector space of dimension equal to the coefficients of x" in the
Poincaré series

(= x4+ —x+1)/(x* = x®+x* =234 x% —x+1)

for all n.

Proof.
P.J. Webb, “A local method in group cohomology” Comment.
Math. Helv. 62 (1987), no. 1, 135-167.



Theorem

The mod 2 cohomology H"(Mi1,7Z5) of the Mathieu group My is
a vector space of dimension equal to the coefficients of x" in the
Poincaré series

(x* =+ x2—x+1)/(x* = x>+ x* =23+ x2 - x +1)

for all n < 20.
Automated Proof.

gap> PoincareSeriesPrimePart(MathieuGroup(11),2,20);
(x"4-x"3+x"2-x+1) /(X" 6-X"B5+x"4-2%x"3+x"2-x+1)



etc.



3. CONTRACTING HOMOTOPIES



A free Z G-resolution

d,
— Ry, = Rp-1— - —Ro

is represented in HAP as a component object.



A free Z G-resolution

d,
— Ry, = Rp-1— - —Ro

is represented in HAP as a component object.

Rl.group = the group G



A free Z G-resolution

d,
— Ry, = Rp-1— - —Ro

is represented in HAP as a component object.

Rl.group = the group G
R!.elts = a (partial) listing of elements of G



A free Z G-resolution

d,
— Ry, = Rp-1— - —Ro

is represented in HAP as a component object.
Rl.group = the group G
R!.elts = a (partial) listing of elements of G
R!.dimension(n) = RankycR,



A free Z G-resolution

d,
— Ry, = Rp-1— - —Ro

is represented in HAP as a component object.
Rl.group = the group G
R!.elts = a (partial) listing of elements of G
R!.dimension(n) = RankycR,

R!.boundary(n,k) = a list of integer pairs representing the
boundary of the kth free generator in degree n



A free Z G-resolution

d,
— Ry, = Rp-1— - —Ro

is represented in HAP as a component object.
Rl.group = the group G
R!.elts = a (partial) listing of elements of G
R!.dimension(n) = RankycR,

R!.boundary(n,k) = a list of integer pairs representing the
boundary of the kth free generator in degree n

And more ...
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The following element of choice occurs frequently in homological
algebra:

For each x € ker(d,: R, — Rn—1) choose an element X € Ry11
such that d,.1(X) = x.

This choice is made using the resolution component

R!.homotopy(n,[i,g]) = contracting homotopy

If G is large or infinite one can't solve d,4+1(X) = x using basic
linear algebra over Z.



A contracting homotopy on R, is a family of abelian group
homomorphisms h,: R, — Rny1 (n > 0) satisfying

dnt1hn(x) + hp—1dp(x) = x

for all x € R, (where h_; = 0).



A contracting homotopy on R, is a family of abelian group
homomorphisms h,: R, — Rny1 (n > 0) satisfying

dnt1hn(x) + hp—1dp(x) = x
for all x € R, (where h_; = 0).

Since the h, are not G-equivariant one needs to specify h,(x) on a
set of abelian group generators for R,.



A contracting homotopy on R, is a family of abelian group
homomorphisms h,: R, — Rny1 (n > 0) satisfying

dnt1hn(x) + hp—1dp(x) = x
for all x € R, (where h_; = 0).

Since the h, are not G-equivariant one needs to specify h,(x) on a
set of abelian group generators for R,.

Lemma
Setting X = hp(x) ensures dn41(X) = x.

So we need a range of methods for providing contracting
homotopies.



Geometry can provide resolutions with contracting homotopy.
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Geometry can provide resolutions with contracting homotopy.
Example:

G = (x,y : [x,y] = 1) acts freely on the contractible space
X =R2

There is a G-equivariant cellular decomposition of X = R? .
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yE




Geometry can provide resolutions with contracting homotopy.
Example:

G = (x,y : [x,y] = 1) acts freely on the contractible space
X =R2

There is a G-equivariant cellular decomposition of X = R? .

E
X XyxXF

W xyV
yE

E XE

Cn(X) = free abelian group on n-cells.
X contractible = cellular chain complex C,(X) is exact.

GX): = GX) B GX) S aX) D GX)



G:=(xy:[xy]l=1)

XyxE’ xyxF
W xyV
yE
E F XE'
\ xV
E XE
We view
d:

as a chain complex of ZG-modules:

5 0% 726272607265 726



G:=(xy:[xy]l=1)

XyxE’ xyxF
W xyV
yE
E F XE'
\ xV
E XE
We view
d:

as a chain complex of ZG-modules:

0% 726272607265 76

d(F) = (1 —x)E' + (y — 1)E



A homotopy homomorphism hy: Co(X) — Ci(X) can be specified
by setting Y = {V'} and choosing a maximal contractible cellular
subspace Y in the 1-skeleton.

XyXE’

W xyV

xXyE




A homotopy homomorphism hy: Co(X) — Ci(X) can be specified
by setting Y = {V'} and choosing a maximal contractible cellular
subspace Y in the 1-skeleton.

XyXE’
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xXyE

Now, for example
ho(xyV) = E' + yE

since this corresponds to the path from V to xyV in Y.



A homotopy homomorphism hy: Co(X) — Ci(X) can be specified
by setting Y = {V'} and choosing a maximal contractible cellular
subspace Y in the 1-skeleton.

XyXE’

W xyV

xXyE

Now, for example
ho(xyV) = E' + yE

since this corresponds to the path from V to xyV in Y!. And
ho(V) =10

since V € YO.



A homotopy homomorphism hy: Ci(X) — Co(X) can be specified
by choosing a maximal contractible cellular subspace Y in the

1-skeleton and a maximal contractible cellular subspace of the
2-skeleton.
XyxE’'
yv xy\V
xyE
E F
\ xV
E




A homotopy homomorphism hy: Ci(X) — Co(X) can be specified
by choosing a maximal contractible cellular subspace Y in the

1-skeleton and a maximal contractible cellular subspace of the
2-skeleton.
XyxE’'
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Now, for example
hi(xyE) =0

since xyE is in Y.



A homotopy homomorphism hy: Ci(X) — Co(X) can be specified
by choosing a maximal contractible cellular subspace Y in the

1-skeleton and a maximal contractible cellular subspace of the
2-skeleton.
XyxE’'
yv xy\V
xyE
E F
\ xV
E

Now, for example
hi(xyE) =0
since xyE is in Y. And
hi(xyxE') = yF + xyF

since this is the “path” from Y! to xyxE’ in



A homotopy homomorphism hy: Ci(X) — Co(X) can be specified
by choosing a maximal contractible cellular subspace Y in the
1-skeleton and a (the) maximal contractible cellular subspace of
the 2-skeleton.

|

yF xyF

Now, for example
hi(xyE) =0
since xyE is in Y. And
hi(xyxE') = yF + xyF.

since this is the “path” from Y! to xyxE’ in



4. THE LEMMA
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Let A be a ring. Let

CG: -C—-C1—---— G

be an A-resolution of some A-module M, where the A-modules C,
are NOT assumed to be free.
Suppose that, for each m, we have a free A-resolution of C,,

Dmy: — Dm,n - Dm,n—l e Dm,O — Cnp

Lemma (C.T.C. Wall)

There exists a free A-resolution R, — M with

Rr= P Dpg-

p+q=n

The proof can be made constructive using the notion of
contracting homotopy. Furthermore, one can derive an
explicit formula for a contracting homotopy on R, in terms of
contracting homotopies on the D, and C,.
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Lemma (C.T.C. Wall)

There is a free A-resolution R, — M with

R, = @ Dp.q

p+q=n

and boundary homomorphism
O=d’+d' +d*+d’+ -

On any summand Dy, 4 all but finitely many d' are zero.



5. POTENTIAL COMPUTATIONS



SCENARIO 1.

Let N be a normal subgroup of G. Set Q = G/N.
Let C, be a free ZQ-resolution of Z.

We can produce suitable resolutions D, from a free
Z N-resolution of Z.

Wall's lemma was proved in this context and provides a free
Z G-resolution of Z.



SCENARIO 1.

Let N be a normal subgroup of G. Set Q = G/N.
Let C, be a free ZQ-resolution of Z.

We can produce suitable resolutions D, from a free
Z N-resolution of Z.

Wall's lemma was proved in this context and provides a free
Z G-resolution of Z.

This technique underlies HAP functions such as:
ResolutionNilpotentGroup(G,n)
ResolutionSubnormalSeries([G,N1,N2,...Nk],n)



Proposition
The free nilpotent group G of class two on 4 generators has
integral cohomology groups

HY(G,Z)=7* H*G,Z) =7, H3(G,Z) = 7°°,
HYG,z) = 7%, H*(G,Z)=Zi®Z®, HY(G,Z)=7Z4e 78,
H'(G,Z) = 7°°, H%(G,Z) = 7%, H%(G,Z) = 7%,
H(G,Z)=7Z, H"(G,Z)=0 (n>11).

The ring H*(G,Z) is generated by: 4 classes in degree 1, 20 classes
in degree 2, 36 classes in degree 3 and 20 classes in degree 4.



Proposition
The free nilpotent group G of class two on 4 generators has
integral cohomology groups

HY(G,Z)=7* H*G,Z) =7, H3(G,Z) = 7°°,
HYG,z) = 7%, H*(G,Z)=Zi®Z®, HY(G,Z)=7Z4e 78,
H'(G,Z) = 7°°, H%(G,Z) = 7%, H%(G,Z) = 7%,
H(G,Z)=7Z, H"(G,Z)=0 (n>11).

The ring H*(G,Z) is generated by: 4 classes in degree 1, 20 classes
in degree 2, 36 classes in degree 3 and 20 classes in degree 4.

The additive structure of H*(G,Z) was first calculated in [Larry
Lambe, “Cohomology of principal G-bundles over a torus when
H*(BG,R) is polynomial”, Bulletin Soc. Math. de Belgium, 38
(1986), 247-264].



gap> n:=3;;m:=7;;

gap> F:=FreeGroup(3);;G:=NilpotentQuotient(F,2);;
gap> R:=ResolutionNilpotentGroup(G,10);;

gap> for n in [1..m-1] do

> Print(‘‘Cohomology in dimension ’’,n,‘‘ = 77,

> Cohomology (HomToIntegers(R),n), ‘‘\n’’); od;
Cohomology in dimension 1 = [ 0, 0, 0 ]
Cohomology in dimension 2 = [ 0, O, 0, O, O, 0, 0, 01
Cohomology in dimension 3 [0, 0, 0, 0,0, 0, 0,0
0, 0, 01

-

Cohomology in dimension 4 = [ 0, O, 0, O, O, 0, 0, 0 1]
Cohomology in dimension 5 = [ 0, 0, 0 ]

Cohomology in dimension 6 = [ 0 ]

gap> Dimension(R) (7);

0

gap>List([1..m-1] ,n->Length(IntegralRingGenerators(R,n)));
(3,8,6,0,0,0]



gap> F:=FreeGroup(4);; G:=NilpotentQuotient(F,2);;

gap> LG:=LowerCentralSeriesLieAlgebra(G);;

gap> LieAlgebraHomology (LG, 8) ;

t o, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
0, 0, 0, 01



gap> F:=FreeGroup(4);; G:=NilpotentQuotient(F,2);;

gap> LG:=LowerCentralSeriesLieAlgebra(G);;

gap> LieAlgebraHomology (LG, 8) ;

t o, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
0, 0, 0, 01

Compare:
gap> GroupHomology(G,8) ;

to,o,o0,o0,0,0,0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0]



SCENARIO 2.

Let G be the fundamental group of a graph of groups. (For
instance, an amalgamated free product G := P x4 Q corresponding
to the graph

P Q

o—— O

A

Let C, be the cellular chain complex of the graph.

We can produce suitable resolutions D,,, from free Z Ge-resolutions
for the edge groups G, and free ZG,-resolutions for the vertex
groups G, .



SCENARIO 2.

Let G be the fundamental group of a graph of groups. (For
instance, an amalgamated free product G := P x4 Q corresponding
to the graph

P Q

o—— O

A

Let C, be the cellular chain complex of the graph.

We can produce suitable resolutions D,,, from free Z Ge-resolutions
for the edge groups G, and free ZG,-resolutions for the vertex
groups G, .

This technique underlies the HAP function:
ResolutionGraphOfGroups(G,n)



The amalgamated free product Ss *s, S4 can be represented as a
graph of groups.

gap>
gap>
gap>

gap>
gap>
gap>

gap>
gap>
L2,

S5:=SymmetricGroup(5) ;
S4:=SymmetricGroup(4);
S3:=SymmetricGroup(3);

S3S5:=GroupHomomorphismByFunction(S3,85,x->x);;
8354 : =GroupHomomorphismByFunction(S3,84,x->x) ;;
D:=[S5,84, [S3S85,83341]11];;

R:=ResolutionGraph0fGroups(D,8);;
Homology (TensorWithIntegers(R),7);
2, 2, 4, 60 ]

So H7(S5 *S, S4,Z) = (22)3 P® Zg D Zgg-



SCENARIO 3.

Let G act on some cellular contractible space X such that cells are
permuted.

Let C. = C.(X).

We can produce suitable resolutions D, from free Z Ge-resolutions
for the stabilizer groups Ge < G of cells e.

Cellular space X can sometimes be produced using POLYMAKE
software . ..



Orbit Polytopes

Let a: G — GI(R") be a faithful representation.
Let v € R" have trivial stabilizer group.

Definition
P(G) = Convex hull {ag(v):g € G}



G = Ag acts on v = (x1,x2, x3,x4) € R* by

2g(v) = (Xg-1(1): X120 X2 (3) X2 (#)



G =Asactson v = (X1,X2,X3,X4) cR* by

ag(v) = (Xg-1(1), Xg-1(2) Xg1(3)> Xg~1(4))
For v =(1,2,3,4) we get

DA



G = A4 acts on v = (x1, X2, X3, x3) € R* by

ag(v) = (Xg-1(1), Xg-1(2) Xg1(3)> Xg~1(4))

For v =(1,2,3,4) we get

x=(1,3,2),y =(1,2)(3,4),z = (2,4,3)



The HAP function
PolytopalComplex(G,v,n)

uses POLYMAKE to produce n terms of the non-free resolution
C«(X) and compute the stabilizer subgroups Ge.

Wall's lemma not yet implemented for this case.



The HAP function
PolytopalComplex(G,v,n)

uses POLYMAKE to produce n terms of the non-free resolution
C«(X) and compute the stabilizer subgroups Ge.

Wall's lemma not yet implemented for this case.

But we can still use C.(X) to find a presentation of G.



gap> G:=SylowSubgroup(AlternatingGroup(18),3);;
gap> P:=PolytopalComplex(G,[1,2,3,4,5,6,7,8,9,
>10,11,12,13,14,15,16,17,18],2) ;
gap> PresentationOfResolution(P);
rec( freeGroup := <free group on the generators

[ £f1, f2, £3, f4, f5, f6, f7, £8 1>,

relators := [ f1°3, f2*xf1xf2"-1xf1"-1, f3*f1*xf3"-1*xf1"-1,
f4xf3xf4"-1xf1° -1, £f1*%f4"-1xf2"-1%f4, £o*xf1*xf5"-1xf1°-1,
f6xf1xf67-1xf17-1, £7*f1*x£7 " -1*xf17-1, £8*f1*£87-1*xf1"-1,
£273, £3*f2x£37-1%xf27-1, f2xf4"-1*x£37-1xf4,
£Exf2+f57-1%£27 -1, £f6*xf2%x£67-1*%f27-1, f7*f2*xf77-1*%£f2"-1,
£8xf2xf87-1%f2"-1, £373, f5xf3*f5°-1x£3"-1,
f6*x£3*xf67-1%£37-1, f7*£3*xf7"-1*%£37-1, £8*f3*x£87-1*£3"-1,
£473, fbxf4*xf5"-1xf4"-1, f6*xf4*xf6"-1xf4"-1,
f7xf4xf77-1%£f4"-1, £8*f4xf8°-1xf4"-1, £573,
f6xf6*xf67-1%xf57-1, f7*fbxf7 " -1%f57-1, £8*f7*f87-1%£f5"-1,
fox£87-1%xf6"-1x£8, £6°3, f7*xf6*f7 " -1xf6"-1,
f6x£87-1*xf7"-1%x£8, £7°3, £873 1 )



POSSIBLE SCENARIO 47

Resolutions in commutative algebra.



