A Lemma of C.T.C. Wall

Braunschweig, September 2007

Graham Ellis
http://www.maths.nuigalway.ie
(Suppotrded by Marie Curie MTKD-CT-2006-042685)

Contents

1. Definitions
2. Example computations
3. Contracting homotopies
4. The lemma
5. Potential computations

1. DEFINITIONS

$$
k=\text { integral domain }
$$

$k=$ integral domain
$A=k\left[x_{1}, \ldots, x_{n}\right] / l$ an associative algebra
$k=$ integral domain
$A=k\left[x_{1}, \ldots, x_{n}\right] / I$ an associative algebra
A sequence of A-module homomorphisms

$$
\ldots \xrightarrow{d_{4}} R_{3} \xrightarrow{d_{3}} R_{2} \xrightarrow{d_{2}} R_{1} \xrightarrow{d_{1}} R_{0}
$$

is said to be a free A-resolution of M if
$k=$ integral domain
$A=k\left[x_{1}, \ldots, x_{n}\right] / I$ an associative algebra
A sequence of A-module homomorphisms

$$
\ldots \xrightarrow{d_{4}} R_{3} \xrightarrow{d_{3}} R_{2} \xrightarrow{d_{2}} R_{1} \xrightarrow{d_{1}} R_{0}
$$

is said to be a free A-resolution of M if

- (Exactness) ker $d_{n}=$ image d_{n+1} for all $n \geq 1$,
$k=$ integral domain
$A=k\left[x_{1}, \ldots, x_{n}\right] / l$ an associative algebra
A sequence of A-module homomorphisms

$$
\ldots \xrightarrow{d_{4}} R_{3} \xrightarrow{d_{3}} R_{2} \xrightarrow{d_{2}} R_{1} \xrightarrow{d_{1}} R_{0}
$$

is said to be a free A-resolution of M if

- (Exactness) $\operatorname{ker} d_{n}=$ image d_{n+1} for all $n \geq 1$,
- (Freeness) R_{n} is a free A-module for all $n \geq 0$,
$k=$ integral domain
$A=k\left[x_{1}, \ldots, x_{n}\right] / I$ an associative algebra
A sequence of A-module homomorphisms

$$
\ldots \xrightarrow{d_{4}} R_{3} \xrightarrow{d_{3}} R_{2} \xrightarrow{d_{2}} R_{1} \xrightarrow{d_{1}} R_{0}
$$

is said to be a free A-resolution of M if

- (Exactness) $\operatorname{ker} d_{n}=$ image d_{n+1} for all $n \geq 1$,
- (Freeness) R_{n} is a free A-module for all $n \geq 0$,
- (Augmentation) the cokernel of d_{1} is isomorphic to the module M.

For A-modules M, N define

$$
\operatorname{Ext}_{A}^{n}(M, N)=\frac{\operatorname{ker}\left(\operatorname{Hom}_{A}\left(R_{n}, N\right) \rightarrow \operatorname{Hom}_{A}\left(R_{n+1}, N\right)\right)}{\operatorname{image}\left(\operatorname{Hom}_{A}\left(R_{n-1}, N\right) \rightarrow \operatorname{Hom}_{A}\left(R_{n}, N\right)\right)}
$$

For A-modules M, N define

$$
\operatorname{Ext}_{A}^{n}(M, N)=\frac{\operatorname{ker}\left(\operatorname{Hom}_{A}\left(R_{n}, N\right) \rightarrow \operatorname{Hom}_{A}\left(R_{n+1}, N\right)\right)}{\operatorname{image}\left(\operatorname{Hom}_{A}\left(R_{n-1}, N\right) \rightarrow \operatorname{Hom}_{A}\left(R_{n}, N\right)\right)}
$$

and

$$
\operatorname{Tor}_{n}^{A}(M, N)=\frac{\operatorname{ker}\left(R_{n} \otimes_{A} N \rightarrow R_{n-1} \otimes_{A} N\right)}{\operatorname{image}\left(R_{n+1} \otimes_{A} N \rightarrow R_{n} \otimes_{A} N\right)}
$$

There are many reasons for wanting to calculate these functors.
My motivation is not:
A system is controllable if one can move from one system trajectory x_{0} to another trajectory x_{1} without violating the system law. Some systems are more controllable than others.

There are many reasons for wanting to calculate these functors.
My motivation is not:
A system is controllable if one can move from one system trajectory x_{0} to another trajectory x_{1} without violating the system law. Some systems are more controllable than others.

For an A-module M (arising from a system) set $N=\operatorname{Hom}_{A}(M, A)$.

Definition

The controllability degree of M is the first natural number $n>0$ such that $E_{A}^{n}(N, A) \neq 0$ and $E x t_{A}^{i}(N, A)=0$ for $0<i<n$.

The are a number of packages for computing these functors.
CoCoA, Macaulay, and Singular contain a range of Gröbner basis methods for computing the functors $\operatorname{Tor}_{n}^{A}(M, N)$ and $E x t_{A}^{n}(M, N)$ in the case where k is a field and the ring A is commutative.

The are a number of packages for computing these functors.
CoCoA, Macaulay, and Singular contain a range of Gröbner basis methods for computing the functors $\operatorname{Tor}_{n}^{A}(M, N)$ and $E x t_{A}^{n}(M, N)$ in the case where k is a field and the ring A is commutative.

The Plural extension to Singular handles certain noncommutative rings A.

For the cohomology of a group G one takes the ring of integers $k=\mathbb{Z}$, the module $M=\mathbb{Z}$ with trivial G-action, the group ring $A=\mathbb{Z} G$, and sets

$$
H^{n}(G, N)=E x t_{\mathbb{Z} G}^{n}(\mathbb{Z}, N), \quad H_{n}(G, N)=\operatorname{Tor}_{n}^{\mathbb{Z} G}(\mathbb{Z}, N)
$$

For the cohomology of a group G one takes the ring of integers $k=\mathbb{Z}$, the module $M=\mathbb{Z}$ with trivial G-action, the group ring $A=\mathbb{Z} G$, and sets

$$
H^{n}(G, N)=E x t_{\mathbb{Z} G}^{n}(\mathbb{Z}, N), \quad H_{n}(G, N)=\operatorname{Tor}_{n}^{\mathbb{Z} G}(\mathbb{Z}, N)
$$

GAP and Magma handle $n=1,2$.
Magma handles $n>2$ for G a small p-group (where it suffices to set $k=G F(p))$.

For the cohomology of a group G one takes the ring of integers $k=\mathbb{Z}$, the module $M=\mathbb{Z}$ with trivial G-action, the group ring $A=\mathbb{Z} G$, and sets

$$
H^{n}(G, N)=E x t_{\mathbb{Z} G}^{n}(\mathbb{Z}, N), \quad H_{n}(G, N)=\operatorname{Tor}_{n}^{\mathbb{Z} G}(\mathbb{Z}, N)
$$

GAP and Magma handle $n=1,2$.
Magma handles $n>2$ for G a small p-group (where it suffices to set $k=G F(p))$.

The computation of cohomology involves two expensive but independent tasks:

1. the computation of a free resolution;
2. the computation of the homology of a chain complex.

This talk focuses on a method for task 1.
2. EXAMPLE COMPUTATIONS

Theorem
(i) The group $K_{3}=\operatorname{ker}\left(\mathrm{SL}_{2}\left(\mathbb{Z}_{3^{3}}\right) \rightarrow \mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)\right)$ has third integral homology group of exponent 27.
(ii) In dimensions $n \neq 3,1 \leq n$ it has integral homology $H_{n}\left(K_{3}, \mathbb{Z}\right)$ of exponent at most 9 .

Proof.

(i) W. Browder and J. Pakianathan, "Cohomology of uniformly powerful p-groups", Trans. Amer. Math. Soc. 352 (2000), no. 6, 2659-2688.
(ii) J. Pakianathan, "Exponents and the cohomology of finite groups", Proc. Amer. Math. Soc. 128 (2000), no. 7, 1893-1897.

Theorem
(i) The group $K_{3}=\operatorname{ker}\left(\mathrm{SL}_{2}\left(\mathbb{Z}_{3^{3}}\right) \rightarrow \mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)\right)$ has third integral homology group of exponent 27.
(ii) In dimensions $n \neq 3,1 \leq n \leq 6$ it has integral homology $H_{n}\left(K_{3}, \mathbb{Z}\right)$ of exponent at most 9 .

Automated Proof.

 gap> K3: $=$ MaximalSubgroups (SylowSubgroup (SL (2, Integers mod 3^3), 3)) [2] ; ;
gap> K3:=Image(IsomorphismPcGroup (K3)); ;
gap> Display(List([1..4],n->GroupHomology(K3,n)));
[[3, 3, 3],
[3, 3, 3],
[3, 3, 3, 3, 3, 3, 27],
[3, 3, 3, 3, 3, 3, 3, 3],
$[3,3,3,3,3,3,3,3,3$,
3, 9, 9, 9],
$[3,3,3,3,3,3,3,3,3$,
3, 9, 9, 9, 9, 9]]

Theorem
The Mathieu group M_{23} has trivial integral homology $H_{n}\left(M_{23}, \mathbb{Z}\right)=0$ in dimensions $n=1,2,3$.

Proof.

R.J. Milgram, "The cohomology of the Mathieu group M_{23} ", J. Group Theory 3 (2000), no. 1, 7-26.

Theorem
The Mathieu group M_{23} has trivial integral homology $H_{n}\left(M_{23}, \mathbb{Z}\right)=0$ in dimensions $n=1,2,3$.

Automated Proof.

gap> GroupHomology(MathieuGroup(23),1);
[]
gap> GroupHomology (MathieuGroup (23) ,2) ;
[]
gap> GroupHomology (MathieuGroup (23),3);
[]

Theorem
The mod 2 cohomology $H^{n}\left(M_{11}, \mathbb{Z}_{2}\right)$ of the Mathieu group M_{11} is a vector space of dimension equal to the coefficients of x^{n} in the Poincaré series

$$
\left(x^{4}-x^{3}+x^{2}-x+1\right) /\left(x^{6}-x^{5}+x^{4}-2 x^{3}+x^{2}-x+1\right)
$$

for all n.
Proof.
P.J. Webb, "A local method in group cohomology" Comment.

Math. Helv. 62 (1987), no. 1, 135-167.

Theorem
The mod 2 cohomology $H^{n}\left(M_{11}, \mathbb{Z}_{2}\right)$ of the Mathieu group M_{11} is a vector space of dimension equal to the coefficients of x^{n} in the Poincaré series

$$
\left(x^{4}-x^{3}+x^{2}-x+1\right) /\left(x^{6}-x^{5}+x^{4}-2 x^{3}+x^{2}-x+1\right)
$$

for all $n \leq 20$.

Automated Proof.

gap> PoincareSeriesPrimePart(MathieuGroup(11),2,20);
$\left(x^{\wedge} 4-x^{\wedge} 3+x^{\wedge} 2-x+1\right) /\left(x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-2 * x^{\wedge} 3+x^{\wedge} 2-x+1\right)$

e t c

3. CONTRACTING HOMOTOPIES

A free $\mathbb{Z} G$-resolution

$$
\rightarrow R_{n} \xrightarrow{d_{n}} R_{n-1} \rightarrow \cdots \rightarrow R_{0}
$$

is represented in HAP as a component object.

A free $\mathbb{Z} G$-resolution

$$
\rightarrow R_{n} \xrightarrow{d_{n}} R_{n-1} \rightarrow \cdots \rightarrow R_{0}
$$

is represented in HAP as a component object.

$$
\mathbf{R}!. \text { group }=\text { the group } G
$$

A free $\mathbb{Z} G$-resolution

$$
\rightarrow R_{n} \xrightarrow{d_{n}} R_{n-1} \rightarrow \cdots \rightarrow R_{0}
$$

is represented in HAP as a component object.
\mathbf{R} !.group = the group G
R!.elts $=$ a (partial) listing of elements of G

A free $\mathbb{Z} G$-resolution

$$
\rightarrow R_{n} \xrightarrow{d_{n}} R_{n-1} \rightarrow \cdots \rightarrow R_{0}
$$

is represented in HAP as a component object.
R!.group = the group G
R!.elts $=$ a (partial) listing of elements of G
\mathbf{R} !.dimension(\mathbf{n}) $=\operatorname{Rank}_{\mathbb{Z} G} R_{n}$

A free $\mathbb{Z} G$-resolution

$$
\rightarrow R_{n} \xrightarrow{d_{n}} R_{n-1} \rightarrow \cdots \rightarrow R_{0}
$$

is represented in HAP as a component object.
\mathbf{R} !.group $=$ the group G
R!.elts $=$ a (partial) listing of elements of G
R!.dimension(\mathbf{n}) $=\operatorname{Rank}_{\mathbb{Z} G} R_{n}$
R!.boundary $(\mathbf{n}, \mathbf{k})=$ a list of integer pairs representing the boundary of the k th free generator in degree n

A free $\mathbb{Z} G$-resolution

$$
\rightarrow R_{n} \xrightarrow{d_{n}} R_{n-1} \rightarrow \cdots \rightarrow R_{0}
$$

is represented in HAP as a component object.
R!.group = the group G
R!.elts $=$ a (partial) listing of elements of G
R!.dimension(\mathbf{n}) $=\operatorname{Rank}_{\mathbb{Z} G} R_{n}$
R!.boundary $(\mathbf{n}, \mathbf{k})=$ a list of integer pairs representing the boundary of the k th free generator in degree n
And more . . .

The following element of choice occurs frequently in homological algebra:

For each $x \in \operatorname{ker}\left(d_{n}: R_{n} \rightarrow R_{n-1}\right)$ choose an element $\tilde{x} \in R_{n+1}$ such that $d_{n+1}(\tilde{x})=x$.

The following element of choice occurs frequently in homological algebra:

For each $x \in \operatorname{ker}\left(d_{n}: R_{n} \rightarrow R_{n-1}\right)$ choose an element $\tilde{x} \in R_{n+1}$ such that $d_{n+1}(\tilde{x})=x$.

This choice is made using the resolution component R!.homotopy($\mathrm{n},[\mathrm{i}, \mathrm{g}]$) = contracting homotopy

The following element of choice occurs frequently in homological algebra:

For each $x \in \operatorname{ker}\left(d_{n}: R_{n} \rightarrow R_{n-1}\right)$ choose an element $\tilde{x} \in R_{n+1}$ such that $d_{n+1}(\tilde{x})=x$.

This choice is made using the resolution component R!.homotopy($\mathrm{n},[\mathrm{i}, \mathrm{g}]$) = contracting homotopy

If G is large or infinite one can't solve $d_{n+1}(\tilde{x})=x$ using basic linear algebra over \mathbb{Z}.

A contracting homotopy on R_{*} is a family of abelian group homomorphisms $h_{n}: R_{n} \rightarrow R_{n+1}(n \geq 0)$ satisfying

$$
d_{n+1} h_{n}(x)+h_{n-1} d_{n}(x)=x
$$

for all $x \in R_{n}$ (where $h_{-1}=0$).

A contracting homotopy on R_{*} is a family of abelian group homomorphisms $h_{n}: R_{n} \rightarrow R_{n+1}(n \geq 0)$ satisfying

$$
d_{n+1} h_{n}(x)+h_{n-1} d_{n}(x)=x
$$

for all $x \in R_{n}$ (where $h_{-1}=0$).
Since the h_{n} are not G-equivariant one needs to specify $h_{n}(x)$ on a set of abelian group generators for R_{n}.

A contracting homotopy on R_{*} is a family of abelian group homomorphisms $h_{n}: R_{n} \rightarrow R_{n+1}(n \geq 0)$ satisfying

$$
d_{n+1} h_{n}(x)+h_{n-1} d_{n}(x)=x
$$

for all $x \in R_{n}$ (where $h_{-1}=0$).
Since the h_{n} are not G-equivariant one needs to specify $h_{n}(x)$ on a set of abelian group generators for R_{n}.

Lemma
Setting $\tilde{x}=h_{n}(x)$ ensures $d_{n+1}(\tilde{x})=x$.
So we need a range of methods for providing contracting homotopies.

Geometry can provide resolutions with contracting homotopy.

Geometry can provide resolutions with contracting homotopy. Example:
$G:=\langle x, y:[x, y]=1\rangle$ acts freely on the contractible space $X=\mathbb{R}^{2}$.

Geometry can provide resolutions with contracting homotopy. Example:
$G:=\langle x, y:[x, y]=1\rangle$ acts freely on the contractible space $X=\mathbb{R}^{2}$.

There is a G-equivariant cellular decomposition of $X=\mathbb{R}^{2}$.

Geometry can provide resolutions with contracting homotopy. Example:
$G:=\langle x, y:[x, y]=1\rangle$ acts freely on the contractible space $X=\mathbb{R}^{2}$.

There is a G-equivariant cellular decomposition of $X=\mathbb{R}^{2}$.

$C_{n}(X)=$ free abelian group on n -cells. X contractible \Rightarrow cellular chain complex $C_{*}(X)$ is exact.

$$
C_{*}(X): \quad \cdots \rightarrow C_{3}(X) \xrightarrow{d_{3}} C_{2}(X) \xrightarrow{d_{2}} C_{1}(X) \xrightarrow{d_{1}} C_{0}(X)
$$

$G:=\langle x, y:[x, y]=1\rangle$

We view

$$
C_{*}(X): \quad \cdots \rightarrow C_{3}(X) \xrightarrow{d_{3}} C_{2}(X) \xrightarrow{d_{2}} C_{1}(X) \xrightarrow{d_{1}} C_{0}(X)
$$

as a chain complex of $\mathbb{Z} G$-modules:

$$
\cdots \rightarrow 0 \xrightarrow{d_{3}} \mathbb{Z} G \xrightarrow{d_{2}} \mathbb{Z} G \oplus \mathbb{Z} G \xrightarrow{d_{1}} \mathbb{Z} G
$$

$G:=\langle x, y:[x, y]=1\rangle$

We view

$$
C_{*}(X): \quad \cdots \rightarrow C_{3}(X) \xrightarrow{d_{3}} C_{2}(X) \xrightarrow{d_{2}} C_{1}(X) \xrightarrow{d_{1}} C_{0}(X)
$$

as a chain complex of $\mathbb{Z} G$-modules:

$$
\begin{gathered}
\cdots \rightarrow 0 \stackrel{d_{3}}{\mathbb{Z}} G \xrightarrow{d_{2}} \mathbb{Z} G \oplus \mathbb{Z} G \xrightarrow{d_{1}} \mathbb{Z} G \\
d_{2}(F)=(1-x) E^{\prime}+(y-1) E
\end{gathered}
$$

A homotopy homomorphism $h_{0}: C_{0}(X) \rightarrow C_{1}(X)$ can be specified by setting $Y^{0}=\{V\}$ and choosing a maximal contractible cellular subspace Y^{1} in the 1-skeleton.

A homotopy homomorphism $h_{0}: C_{0}(X) \rightarrow C_{1}(X)$ can be specified by setting $Y^{0}=\{V\}$ and choosing a maximal contractible cellular subspace Y^{1} in the 1-skeleton.

Now, for example

$$
h_{0}(x y V)=E^{\prime}+y E
$$

since this corresponds to the path from V to $x y V$ in Y^{1}.

A homotopy homomorphism $h_{0}: C_{0}(X) \rightarrow C_{1}(X)$ can be specified by setting $Y^{0}=\{V\}$ and choosing a maximal contractible cellular subspace Y^{1} in the 1-skeleton.

Now, for example

$$
h_{0}(x y V)=E^{\prime}+y E
$$

since this corresponds to the path from V to $x y V$ in Y^{1}. And

$$
h_{0}(V)=0
$$

since $V \in Y^{0}$.

A homotopy homomorphism $h_{1}: C_{1}(X) \rightarrow C_{2}(X)$ can be specified by choosing a maximal contractible cellular subspace Y^{1} in the 1-skeleton and a maximal contractible cellular subspace Y^{2} of the 2-skeleton.

A homotopy homomorphism $h_{1}: C_{1}(X) \rightarrow C_{2}(X)$ can be specified by choosing a maximal contractible cellular subspace Y^{1} in the 1-skeleton and a maximal contractible cellular subspace Y^{2} of the 2-skeleton.

Now, for example

$$
h_{1}(x y E)=0
$$

since $x y E$ is in Y^{1}.

A homotopy homomorphism $h_{1}: C_{1}(X) \rightarrow C_{2}(X)$ can be specified by choosing a maximal contractible cellular subspace Y^{1} in the 1-skeleton and a maximal contractible cellular subspace Y^{2} of the 2-skeleton.

Now, for example

$$
h_{1}(x y E)=0
$$

since $x y E$ is in Y^{1}. And

$$
h_{1}\left(x y x E^{\prime}\right)=y F+x y F
$$

since this is the "path" from Y^{1} to $x y x E^{\prime}$ in Y^{2}.

A homotopy homomorphism $h_{1}: C_{1}(X) \rightarrow C_{2}(X)$ can be specified by choosing a maximal contractible cellular subspace Y^{1} in the 1 -skeleton and a (the) maximal contractible cellular subspace of the 2-skeleton.

Now, for example

$$
h_{1}(x y E)=0
$$

since $x y E$ is in Y^{1}. And

$$
h_{1}\left(x y x E^{\prime}\right)=y F+x y F
$$

since this is the "path" from Y^{1} to $x y x E^{\prime}$ in Y^{2}.
4. THE LEMMA

Let A be a ring. Let

$$
C_{*}: \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{0}
$$

be an A-resolution of some A-module M, where the A-modules C_{n} are NOT assumed to be free.

Let A be a ring. Let

$$
C_{*}: \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{0}
$$

be an A-resolution of some A-module M, where the A-modules C_{n} are NOT assumed to be free.
Suppose that, for each m, we have a free A-resolution of C_{m}

$$
D_{m *}: \rightarrow D_{m, n} \rightarrow D_{m, n-1} \rightarrow \cdots \rightarrow D_{m, 0} \rightarrow C_{m}
$$

Let A be a ring. Let

$$
C_{*}: \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{0}
$$

be an A-resolution of some A-module M, where the A-modules C_{n} are NOT assumed to be free.
Suppose that, for each m, we have a free A-resolution of C_{m}

$$
D_{m *}: \rightarrow D_{m, n} \rightarrow D_{m, n-1} \rightarrow \cdots \rightarrow D_{m, 0} \rightarrow C_{m}
$$

Lemma (C.T.C. Wall)
There exists a free A-resolution $R_{*} \rightarrow M$ with

$$
R_{n}=\bigoplus_{p+q=n} D_{p, q}
$$

Let A be a ring. Let

$$
C_{*}: \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{0}
$$

be an A-resolution of some A-module M, where the A-modules C_{n} are NOT assumed to be free.
Suppose that, for each m, we have a free A-resolution of C_{m}

$$
D_{m *}: \rightarrow D_{m, n} \rightarrow D_{m, n-1} \rightarrow \cdots \rightarrow D_{m, 0} \rightarrow C_{m}
$$

Lemma (C.T.C. Wall)
There exists a free A-resolution $R_{*} \rightarrow M$ with

$$
R_{n}=\bigoplus_{p+q=n} D_{p, q}
$$

The proof can be made constructive using the notion of contracting homotopy. Furthermore, one can derive an explicit formula for a contracting homotopy on R_{*} in terms of contracting homotopies on the $D_{m *}$ and C_{*}.

but for $d^{1} d^{1} \neq 0$

but for $d^{2} d^{2} \neq 0$ etc

Lemma (C.T.C. Wall)

There is a free A-resolution $R_{*} \rightarrow M$ with

$$
R_{n}=\bigoplus_{p+q=n} D_{p, q}
$$

and boundary homomorphism

$$
\partial=d^{0}+d^{1}+d^{2}+d^{3}+\cdots
$$

On any summand $D_{p, q}$ all but finitely many d^{i} are zero.

5. POTENTIAL COMPUTATIONS

SCENARIO 1.

Let N be a normal subgroup of G. Set $Q=G / N$.
Let C_{*} be a free $\mathbb{Z} Q$-resolution of \mathbb{Z}.
We can produce suitable resolutions $D_{m *}$ from a free $\mathbb{Z} N$-resolution of \mathbb{Z}.

Wall's lemma was proved in this context and provides a free $\mathbb{Z} G$-resolution of \mathbb{Z}.

SCENARIO 1.

Let N be a normal subgroup of G. Set $Q=G / N$.
Let C_{*} be a free $\mathbb{Z} Q$-resolution of \mathbb{Z}.
We can produce suitable resolutions $D_{m *}$ from a free $\mathbb{Z N}$-resolution of \mathbb{Z}.

Wall's lemma was proved in this context and provides a free $\mathbb{Z} G$-resolution of \mathbb{Z}.

This technique underlies HAP functions such as:
ResolutionNilpotentGroup (G, n)
ResolutionSubnormalSeries([G,N1,N2, ...Nk],n)

Proposition

The free nilpotent group G of class two on 4 generators has integral cohomology groups

$$
\begin{array}{lll}
H^{1}(G, \mathbb{Z}) \cong \mathbb{Z}^{4}, & H^{2}(G, \mathbb{Z}) \cong \mathbb{Z}^{20}, & H^{3}(G, \mathbb{Z}) \cong \mathbb{Z}^{56}, \\
H^{4}(G, \mathbb{Z}) \cong \mathbb{Z}^{84}, & H^{5}(G, \mathbb{Z}) \cong \mathbb{Z}_{3}^{4} \oplus \mathbb{Z}^{90}, & H^{6}(G, \mathbb{Z}) \cong \mathbb{Z}_{3}^{4} \oplus \mathbb{Z}^{84}, \\
H^{7}(G, \mathbb{Z}) \cong \mathbb{Z}^{56}, & H^{8}(G, \mathbb{Z}) \cong \mathbb{Z}^{20}, & H^{9}(G, \mathbb{Z}) \cong \mathbb{Z}^{4}, \\
H^{10}(G, \mathbb{Z}) \cong \mathbb{Z}, & H^{n}(G, \mathbb{Z})=0(n \geq 11) . &
\end{array}
$$

The ring $H^{*}(G, \mathbb{Z})$ is generated by: 4 classes in degree 1,20 classes in degree 2,36 classes in degree 3 and 20 classes in degree 4 .

Proposition

The free nilpotent group G of class two on 4 generators has integral cohomology groups

$$
\begin{array}{lll}
H^{1}(G, \mathbb{Z}) \cong \mathbb{Z}^{4}, & H^{2}(G, \mathbb{Z}) \cong \mathbb{Z}^{20}, & H^{3}(G, \mathbb{Z}) \cong \mathbb{Z}^{56}, \\
H^{4}(G, \mathbb{Z}) \cong \mathbb{Z}^{84}, & H^{5}(G, \mathbb{Z}) \cong \mathbb{Z}_{3}^{4} \oplus \mathbb{Z}^{90}, & H^{6}(G, \mathbb{Z}) \cong \mathbb{Z}_{3}^{4} \oplus \mathbb{Z}^{84}, \\
H^{7}(G, \mathbb{Z}) \cong \mathbb{Z}^{56}, & H^{8}(G, \mathbb{Z}) \cong \mathbb{Z}^{20}, & H^{9}(G, \mathbb{Z}) \cong \mathbb{Z}^{4}, \\
H^{10}(G, \mathbb{Z}) \cong \mathbb{Z}, & H^{n}(G, \mathbb{Z})=0(n \geq 11) . &
\end{array}
$$

The ring $H^{*}(G, \mathbb{Z})$ is generated by: 4 classes in degree 1,20 classes in degree 2,36 classes in degree 3 and 20 classes in degree 4.

The additive structure of $H^{*}(G, \mathbb{Z})$ was first calculated in [Larry Lambe, "Cohomology of principal G-bundles over a torus when $H^{*}(B G, R)$ is polynomial", Bulletin Soc. Math. de Belgium, 38 (1986), 247-264].
gap> n:=3; ;m:=7; ;
gap> F:=FreeGroup(3); ;G:=NilpotentQuotient(F,2); ;
gap> R:=ResolutionNilpotentGroup(G,10); ;
gap> for n in [1..m-1] do
> Print(''Cohomology in dimension '', $\mathrm{n},{ }^{\prime} \times$ = ',
> Cohomology(HomToIntegers(R),n),' $\backslash n$ ''); od;
Cohomology in dimension $1=[0,0,0]$
Cohomology in dimension $2=[0,0,0,0,0,0,0,0]$
Cohomology in dimension $3=[0,0,0,0,0,0,0,0,0$, 0, 0, 0]
Cohomology in dimension $4=[0,0,0,0,0,0,0,0]$
Cohomology in dimension $5=[0,0,0]$
Cohomology in dimension $6=$ [0]
gap> Dimension(R)(7);
0
gap>List([1..m-1], n->Length(IntegralRingGenerators(R,n)));
$[3,8,6,0,0,0]$
gap> F:=FreeGroup(4); ; G:=NilpotentQuotient(F,2); ;
gap> LG:=LowerCentralSeriesLieAlgebra(G); ;
gap> LieAlgebraHomology(LG,8);
$[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$, $0,0,0,0]$
gap> F:=FreeGroup(4); ; G:=NilpotentQuotient(F,2); ;
gap> LG:=LowerCentralSeriesLieAlgebra(G); ;
gap> LieAlgebraHomology(LG,8);
$[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$, $0,0,0,0]$

Compare:
gap> GroupHomology (G,8);
$[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$, $0,0,0,0]$

SCENARIO 2.

Let G be the fundamental group of a graph of groups. (For instance, an amalgamated free product $G:=P *_{A} Q$ corresponding to the graph

>).

Let C_{*} be the cellular chain complex of the graph.
We can produce suitable resolutions $D_{m *}$ from free $\mathbb{Z} G_{e}$-resolutions for the edge groups G_{e} and free $\mathbb{Z} G_{v}$-resolutions for the vertex groups G_{v}.

SCENARIO 2.

Let G be the fundamental group of a graph of groups. (For instance, an amalgamated free product $G:=P *_{A} Q$ corresponding to the graph

).

Let C_{*} be the cellular chain complex of the graph.
We can produce suitable resolutions $D_{m *}$ from free $\mathbb{Z} G_{e}$-resolutions for the edge groups G_{e} and free $\mathbb{Z} G_{v}$-resolutions for the vertex groups G_{v}.

This technique underlies the HAP function: ResolutionGraphOfGroups (G,n)

The amalgamated free product $S_{5} *_{3} S_{4}$ can be represented as a graph of groups.
gap> S5:=SymmetricGroup(5);
gap> S4:=SymmetricGroup (4);
gap> S3:=SymmetricGroup(3);
gap> S3S5:=GroupHomomorphismByFunction(S3,S5,x->x) ; ; gap> S3S4:=GroupHomomorphismByFunction(S3,S4,x->x) ; ; gap> D:=[S5,S4,[S3S5,S3S4]];
gap> R:=ResolutionGraphOfGroups (D, 8); ; gap> Homology(TensorWithIntegers(R),7);
[2, 2, 2, 4, 60]
So $H_{7}\left(S_{5} *_{3} S_{4}, \mathbb{Z}\right)=\left(Z_{2}\right)^{3} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{60}$.

SCENARIO 3.

Let G act on some cellular contractible space X such that cells are permuted.

Let $C_{*}=C_{*}(X)$.
We can produce suitable resolutions $D_{m *}$ from free $\mathbb{Z} G_{e}$-resolutions for the stabilizer groups $G_{e} \leq G$ of cells e.

Cellular space X can sometimes be produced using Polymake software ...

Orbit Polytopes

Let $\alpha: G \rightarrow G /\left(\mathbb{R}^{n}\right)$ be a faithful representation.
Let $v \in \mathbb{R}^{n}$ have trivial stabilizer group.

Definition
 $P(G)=$ Convex hull $\{\alpha g(v): g \in G\}$

$G=A_{4}$ acts on $v=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ by

$$
\alpha g(v)=\left(x_{g^{-1}(1)}, x_{g^{-1}(2)}, x_{g^{-1}(3)}, x_{g^{-1}(4)}\right)
$$

$G=A_{4}$ acts on $v=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ by

$$
\alpha g(v)=\left(x_{g^{-1}(1)}, x_{g^{-1}(2)}, x_{g^{-1}(3)}, x_{g^{-1}(4)}\right)
$$

For $v=(1,2,3,4)$ we get

$$
\begin{aligned}
& G=A_{4} \text { acts on } v=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \text { by } \\
& \qquad \alpha g(v)=\left(x_{g^{-1}(1)}, x_{g^{-1}(2)}, x_{g^{-1}(3)}, x_{g^{-1}(4)}\right)
\end{aligned}
$$

For $v=(1,2,3,4)$ we get

$$
x=(1,3,2), y=(1,2)(3,4), z=(2,4,3)
$$

The HAP function
PolytopalComplex (G,v,n)
uses Polymake to produce n terms of the non-free resolution $C_{*}(X)$ and compute the stabilizer subgroups G_{e}.

Wall's lemma not yet implemented for this case.

The HAP function
PolytopalComplex (G,v,n)
uses Polymake to produce n terms of the non-free resolution $C_{*}(X)$ and compute the stabilizer subgroups G_{e}.

Wall's lemma not yet implemented for this case.
But we can still use $C_{*}(X)$ to find a presentation of G.
gap> G:=SylowSubgroup(AlternatingGroup (18),3) ; ; gap> P:=PolytopalComplex (G, [1,2,3,4,5,6,7,8,9, $>10,11,12,13,14,15,16,17,18], 2)$;
gap> PresentationOfResolution(P);
rec (freeGroup := <free group on the generators [f1, f2, f3, f4, f5, f6, f7, f8]>,
relators $:=\left[f 1^{\wedge} 3, f 2 * f 1 * f 2^{\wedge}-1 * f 1^{\wedge}-1, f 3 * f 1 * f 3^{\wedge}-1 * f 1^{\wedge}-1\right.$, $\mathrm{f} 4 * \mathrm{f} 3 * \mathrm{f} 4^{\wedge}-1 * \mathrm{f} 1^{\wedge}-1, \mathrm{f} 1 * \mathrm{f} 4^{\wedge}-1 * \mathrm{f} 2^{\wedge}-1 * \mathrm{f} 4, \mathrm{f} 5 * \mathrm{f} 1 * \mathrm{f} 5^{\wedge}-1 * \mathrm{f} 1^{\wedge}-1$, $\mathrm{f} 6 * \mathrm{f} 1 * \mathrm{f} 6^{\wedge}-1 * \mathrm{f} 1^{\wedge}-1, \mathrm{f} 7 * \mathrm{f} 1 * \mathrm{f} 7^{\wedge}-1 * \mathrm{f} 1^{\wedge}-1, \mathrm{f} 8 * \mathrm{f} 1 * \mathrm{f} 8^{\wedge}-1 * \mathrm{f} 1^{\wedge}-1$, $\mathrm{f} 2 \wedge 3, \mathrm{f} 3 * \mathrm{f} 2 * \mathrm{f} 3^{\wedge}-1 * \mathrm{f} 2^{\wedge}-1, \mathrm{f} 2 * \mathrm{f} 4^{\wedge}-1 * \mathrm{f} 3^{\wedge}-1 * \mathrm{f} 4$, $\mathrm{f} 5 * \mathrm{f} 2 * \mathrm{f} 5^{\wedge}-1 * \mathrm{f} 2^{\wedge}-1, \mathrm{f} 6 * \mathrm{f} 2 * \mathrm{f} 6^{\wedge}-1 * \mathrm{f} 2^{\wedge}-1, \mathrm{f} 7 * \mathrm{f} 2 * \mathrm{f} 7^{\wedge}-1 * \mathrm{f} 2^{\wedge}-1$, $\mathrm{f} 8 * \mathrm{f} 2 * \mathrm{f} 8^{\wedge}-1 * \mathrm{f} 2^{\wedge}-1, \mathrm{f} 3^{\wedge} 3, \mathrm{f} 5 * \mathrm{f} 3 * \mathrm{f} 5^{\wedge}-1 * f 3^{\wedge}-1$, $\mathrm{f} 6 * \mathrm{f} 3 * \mathrm{f} 6^{\wedge}-1 * \mathrm{f} 3^{\wedge}-1, \mathrm{f} 7 * \mathrm{f} 3 * \mathrm{f} 7^{\wedge}-1 * \mathrm{f} 3^{\wedge}-1, \mathrm{f} 8 * \mathrm{f} 3 * \mathrm{f} 8^{\wedge}-1 * \mathrm{f} 3^{\wedge}-1$, $\mathrm{f} 4 \wedge 3$, $\mathrm{f} 5 * \mathrm{f} 4 * \mathrm{f} 5^{\wedge}-1 * \mathrm{f} 4^{\wedge}-1$, $\mathrm{f} 6 * \mathrm{f} 4 * \mathrm{f} 6^{\wedge}-1 * f 4^{\wedge}-1$, $\mathrm{f} 7 * \mathrm{f} 4 * \mathrm{f} 7^{\wedge}-1 * \mathrm{f} 4^{\wedge}-1, \mathrm{f} 8 * \mathrm{f} 4 * \mathrm{f} 8^{\wedge}-1 * \mathrm{f} 4^{\wedge}-1, \mathrm{f} 5^{\wedge} 3$, $\mathrm{f} 6 * \mathrm{f} 5 * \mathrm{f} 6^{\wedge}-1 * \mathrm{f} 5^{\wedge}-1, \mathrm{f} 7 * \mathrm{f} 5 * \mathrm{f} 7^{\wedge}-1 * \mathrm{f} 5^{\wedge}-1, \mathrm{f} 8 * \mathrm{f} 7 * \mathrm{f} 8^{\wedge}-1 * \mathrm{f} 5^{\wedge}-1$, $\mathrm{f} 5 * \mathrm{f} 8^{\wedge}-1 * \mathrm{f} 6^{\wedge}-1 * \mathrm{f} 8$, $\mathrm{f} 6^{\wedge} 3, \mathrm{f} 7 * \mathrm{f} 6 * \mathrm{f} 7^{\wedge}-1 * \mathrm{f} 6^{\wedge}-1$, $\mathrm{f} 6 * \mathrm{f} 8^{\wedge}-1 * \mathrm{f} 7^{\wedge}-1 * \mathrm{f} 8, \mathrm{f} 7^{\wedge} 3, \mathrm{f} 8^{\wedge} 3$])

POSSIBLE SCENARIO 4?

Resolutions in commutative algebra.

